精英家教网 > 高中数学 > 题目详情

已知向量向量与向量的夹角为,且.

(1)求向量 ;  

(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.

 

【答案】

(1);(2).

【解析】

试题分析:(1)设,根据条件列方程组计算可得;(2)先确定,利用向量的坐标运算得的表达式,又有的内角,且依次成等差数列,求得角范围,从而得的范围.

试题解析:(1)设,由,得 ①          2分

又向量与向量的夹角为,得 ②                    4分

由①、②解得.         5分

(2)向量共线知,                          6分

由2B=A+C知,                       7分

,                     8分

                 9分

,      11分

,           12分

,即.13分

考点:1、向量的坐标运算;2、向量与三角函数综合应用.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
b
是平面α内的一组基底,向量
c
=
a
+2
b
,对于平面α内异于
a
b
的不共线向量
m
n
,现给出下列命题:
①当
m
n
分别与
a
b
对应共线时,满足
c
=
m
+2
n
的向量
m
n
有无数组;
②当
m
n
a
b
均不共线时,满足
c
=
m
+2
n
的向量
m
n
有无数组;
③当
m
n
分别与
a
b
对应共线时,满足
c
=
m
+2
n
的向量
m
n
不存在;
④当
m
a
共线,但向量
n
与向量
b
不共线时,满足
c
=
m
+2
n
的向量
m
n
有无数组.
其中真命题的序号是
 
.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2012-2013学年上海市浦东新区高三4月高考预测(二模)理科数学试卷(解析版) 题型:解答题

已知向量向量与向量的夹角为,且

(1 )求向量 ;  

(2)若向量共线,向量,其中的内角,且依次成等差数列,求的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知向量a,b是平面α内的一组基底,向量c=a+2b,对于平面α内异于a,b的不共线向量m,n,现给出下列命题:
①当m,n分别与a,b对应共线时,满足c=m+2n的向量m,n有无数组;
②当m,n与a,b均不共线时,满足c=m+2n的向量m,n有无数组;
③当m,n分别与a,b对应共线时,满足c=m+2n的向量m,n不存在;
④当m与a共线,但向量n与向量b不共线时,满足c=m+2n的向量m,n有无数组.
其中真命题的序号是________.(填上所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源:2011年福建省莆田市高三质量检查数学试卷(理科)(解析版) 题型:解答题

已知向量a,b是平面α内的一组基底,向量c=a+2b,对于平面α内异于a,b的不共线向量m,n,现给出下列命题:
①当m,n分别与a,b对应共线时,满足c=m+2n的向量m,n有无数组;
②当m,n与a,b均不共线时,满足c=m+2n的向量m,n有无数组;
③当m,n分别与a,b对应共线时,满足c=m+2n的向量m,n不存在;
④当m与a共线,但向量n与向量b不共线时,满足c=m+2n的向量m,n有无数组.
其中真命题的序号是    .(填上所有真命题的序号)

查看答案和解析>>

同步练习册答案