精英家教网 > 高中数学 > 题目详情
设a、b、c是互不相等的正数,则下列不等式中不恒成立的是(  )
A.|a-b|≤|a-c|+|b-c|B.a2+
1
a2
≥a+
1
a
C.
a+3
-
a+1
a+2
-
a
D.|a-b|+
1
a-b
≥2
A:|a-b|=|a-c+c-b|≤|a-c|+|c-b|=|a-c|+|b-c|,故A恒成立
B:由于由于函数f(x)=x+
1
x
在(0,1]单调递减,在[1,+∞)单调递增
当a>1时,a2>a>1,f(a2)>f(a)即,a2+
2
a2
>a+
1
a

当0<a<1,0<a2<a<1,f(a2)>f(a)即a2+
2
a2
>a+
1
a

当a=1,a2+
2
a2
=a+
1
a

故B恒成立;
C:由于
a+3
-
a+1
=
2
a+3
+
a+1
2
a+2
+
a
=
a+2
-
a
.故C恒成立;
D:若a-b=-1,则该不等式不成立,故B不恒成立
故选D.
练习册系列答案
相关习题

科目:高中数学 来源:2013届安徽省高二下学期期中考试理科数学试卷(解析版) 题型:解答题

已知a、b、c是互不相等的非零实数.若用反证法证明三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一个方程有两个相异实根.

【解析】本试题主要考查了二次方程根的问题的综合运用。运用反证法思想进行证明。

先反设,然后推理论证,最后退出矛盾。证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.显然不成立。

证明:假设三个方程中都没有两个相异实根,

则Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由题意a、b、c互不相等,∴①式不能成立.

∴假设不成立,即三个方程中至少有一个方程有两个相异实根.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

设a、b、c是互不相等的非零实数,试证:三个方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0中至少有一个方程有两个相异实根.

查看答案和解析>>

同步练习册答案