精英家教网 > 高中数学 > 题目详情
设函数.
(1)解方程:
(2)令,求证:

(3)若是实数集上的奇函数,且
对任意实数恒成立,求实数的取值范围.
(1);(2)参考解析;(3)

试题分析:(1)由于函数,所以解方程.通过换元即可转化为解二次方程.即可求得结论.
(2)由于即得到.所以.所以两个一组的和为1,还剩中间一个.即可求得结论.
(3)由是实数集上的奇函数,可求得.又由于对任意实数恒成立.该式的理解较困难,所以研究函数的单调性可得.函数在实数集上是递增.集合奇函数,由函数值大小即可得到变量的大小,再利用基本不等式,从而得到结论.
试题解析:(1)即:,解得
(2).
因为
所以,
(3)因为是实数集上的奇函数,所以.
在实数集上单调递增.
,又因为是实数集上的奇函数,所以,
又因为在实数集上单调递增,所以
对任意的都成立,
对任意的都成立,.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数时都取得极值.
(1)求的值与函数的单调区间
(2)若对,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:
,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.
(1)当时,判断该项举措能否获利?如果能获利,求出最大利润;
如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?
(2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•湖北)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度的单位:s,v的单位:m/s)行驶至停止,在此期间汽车继续行驶的距离(单位:m)是(  )
A.1+25ln5B.8+25lnC.4+25ln5D.4+50ln2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义在R上的函数满足,当时,,则函数在区间上的零点个数为(   )
A.403B.402 C.401D.201

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且. 假设该容器的建造费用仅与其表面积有关. 已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为22千元. 设该容器的建造费用为y千元. 当该容器建造费用最小时,r的值为(   )
A.B.1C.D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义在实数集上的函数,如果存在函数为常数),使得对一切实数都成立,那么称为函数的一个承托函数.给出如下四个结论:
①对于给定的函数,其承托函数可能不存在,也可能有无数个;
②定义域和值域都是的函数不存在承托函数;
为函数的一个承托函数;
为函数的一个承托函数.
其中所有正确结论的序号是____________________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在R上的函数存在零点,且对任意都满足若关于的方程恰有三个不同的根,则实数的取值范围是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知定义在上的偶函数满足,且在区间[0,2]上.若关于的方程有三个不同的根,则的范围为              

查看答案和解析>>

同步练习册答案