精英家教网 > 高中数学 > 题目详情

【题目】连续投掷两次骰子得到的点数分别为m,n,向量 与向量 的夹角记为α,则α 的概率为(
A.
B.
C.
D.

【答案】B
【解析】解:根据题意,m、n的情况各有6种,则 的情况有6×6=36种,

又由题意,向量 ,向量

则cosα=

若α ,则 <1,

化简可得m2>n2,即m>n,

的坐标可以为:(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5),共有15种情况;

则α 的概率为 =

故选B.

【考点精析】本题主要考查了数量积表示两个向量的夹角的相关知识点,需要掌握设都是非零向量,的夹角,则才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xe2x﹣lnx﹣ax.
(1)当a=0时,求函数f(x)在[ ,1]上的最小值;
(2)若x>0,不等式f(x)≥1恒成立,求a的取值范围;
(3)若x>0,不等式f( )﹣1≥ e + 恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三角形ABC中,角A,B,C所对边分别为a,b,c,满足(2b﹣c)cosA=acosC.
(1)求角A;
(2)若 ,b+c=5,求三角形ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x+2|+|x﹣1|.
(1)求不等式f(x)>5的解集;
(2)若对于任意的实数x恒有f(x)≥|a﹣1|成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex(sinx+cosx)+a,g(x)=(a2﹣a+10)ex(a为常数).
(1)已知a=0,求曲线y=f(x)在(0,f(0))处的切线方程;
(2)当0≤x≤π时,求f(x)的值域;
(3)若存在x1、x2∈[0,π],使得|f(x1)﹣g(x2)|<13﹣e 成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=g(x)﹣(a﹣1)lnx,g(x)=ax+ +1﹣3a+(a﹣1)lnx.
(1)当a=1时,求函数y=f(x)在点(2,f(2))处的切线方程;
(2)若不等式g(x)≥0在x∈[1,+∞)时恒成立,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司的研发团队,可以进行A、B、C三种新产品的研发,研发成功的概率分别为P(A)= ,P(B)= ,P(C)= ,三个产品的研发相互独立.
(1)求该公司恰有两个产品研发成功的概率;
(2)已知A、B、C三种产品研发成功后带来的产品收益(单位:万元)分别为1000、2000、1100,为了收益最大化,公司从中选择两个产品研发,请你从数学期望的角度来考虑应该研发哪两个产品?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某几何体的三视图如图所示(单位:cm),则此几何体的体积为 , 表面积为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|3x﹣a|+|3x﹣6|,g(x)=|x﹣2|+1.
(Ⅰ)a=1时,解不等式f(x)≥8;
(Ⅱ)若对任意x1∈R都有x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案