精英家教网 > 高中数学 > 题目详情

【题目】已知是整数,幂函数上是单调递增函数.

(1)求幂函数的解析式;

(2)作出函数的大致图象;

(3)写出的单调区间,并用定义法证明在区间上的单调性.

【答案】(1);(2)图象见解析;(3)减区间为;增区间为,证明见解析.

【解析】

(1)根据幂函数上是单调递增函数,可知,解不等式即可.

(2)(1)可知,则,先画出的图象,再将该图象轴下方的部分翻折到轴上方,即可.

(3)根据(2)的图象写出单调区间,再根据定义法证明函数单调性,即可.

(1)由题意可知,,即

因为是整数,所以

时,

时,

综上所述,幂函数的解析式为.

(2) (1)可知,则

函数的图象,如图所示:

(3)(2)可知,减区间为;增区间为

时,

设任意的

在区间上单调递增.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.

求甲在4局以内(含4局)赢得比赛的概率;

为比赛决出胜负时的总局数,求的分布列和均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)经过两点.

(1)求椭圆的方程;

(2)过原点的直线与椭圆交于两点,椭圆上一点满足,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的展开式的各二项式系数的和等于128

1)求的值;

2)求的展开式中的有理项;

3)求的展开式中系数最大的项和系数最小的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】是定义在上的偶函数,对任意,都有,且当时,.在区间内关于的方程恰有个不同的实数根,则实数的取值范围是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取60名学生进行调查,则应从丁专业抽取的学生人数为____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形,不妨设 , 边上的高为 ,圆心为 ,为了使三角形的面积最大,我们设计了两种方案.

(1)方案1:设 ,用表示 的面积 ; 方案2:设的高,用表示 的面积

(2)请从(1)中的两种方案中选择一种,求出面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.

(1)求证:MN//平面ACC1A1

(2)求点N到平面MBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥P-ABC中,底面ABC.DEN分别为棱PAPCBC的中点,M是线段AD的中点,.

1)求证:平面BDE

2)求二面角C-EM-N的正弦值.

3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

同步练习册答案