【题目】已知是整数,幂函数在上是单调递增函数.
(1)求幂函数的解析式;
(2)作出函数的大致图象;
(3)写出的单调区间,并用定义法证明在区间上的单调性.
科目:高中数学 来源: 题型:
【题目】甲乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛,若赛完5局仍未出现连胜,则判定获胜局数多者赢得比赛,假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.
求甲在4局以内(含4局)赢得比赛的概率;
记为比赛决出胜负时的总局数,求的分布列和均值(数学期望).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校甲、乙、丙、丁四个专业分别有150,150,400,300名学生.为了解学生的就业倾向,用分层抽样的方法从该校这四个专业中抽取60名学生进行调查,则应从丁专业抽取的学生人数为____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,有一张半径为1米的圆形铁皮,工人师傅需要剪一块顶角为锐角的等腰三角形,不妨设 , 边上的高为 ,圆心为 ,为了使三角形的面积最大,我们设计了两种方案.
(1)方案1:设 为 ,用表示 的面积 ; 方案2:设的高为,用表示 的面积;
(2)请从(1)中的两种方案中选择一种,求出面积的最大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC—A1B1C1中,BC=3,AB=4,AC=CC1=5,M,N分别是A1B,B1C1的中点.
(1)求证:MN//平面ACC1A1;
(2)求点N到平面MBC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥P-ABC中,底面ABC,.点D,E,N分别为棱PA,PC,BC的中点,M是线段AD的中点,,.
(1)求证:平面BDE;
(2)求二面角C-EM-N的正弦值.
(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com