精英家教网 > 高中数学 > 题目详情
以下结论正确的有    (写出所有正确结论的序号)
①函数在(-∞,0)∪(0,+∞)上是减函数;
②对于函数f(x)=-x2+1,当x1≠x2时,都有
③已知幂函数的图象过点,则当x>1时,该函数的图象始终在直线y=x的下方;
④奇函数的图象必过坐标原点;
⑤函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1,则f(x)在R上为增函数.
【答案】分析:①函数在(-∞,0)和(0,+∞)上分别是减函数,在(-∞,0)∪(0,+∞)上没有单调性;
②f(x)=-x2+1,x1≠x2,利用作差法能够比较和f()的大小;
③设幂函数f(x)=xa,由幂函数的图象过点,知f(x)=x,由此能求出结果;
④由奇函数的性质,知奇函数的图象不一定过坐标原点;
⑤根据抽象函数的性质,利用定义法能够判断f(x)R上的单调性.
解答:解:①函数在(-∞,0)和(0,+∞)上分别是减函数,
但在(-∞,0)∪(0,+∞)上没有单调性,故①不正确;
②∵f(x)=-x2+1,x1≠x2
-f(
=-[-(2+1]
=-<0,
,故②正确;
③设幂函数f(x)=xa
∵幂函数的图象过点,∴f(2)=,故f(x)=x
∴当x>1时,该函数的图象始终在直线y=x的下方,故③正确;
④由奇函数的性质,知奇函数的图象不一定过坐标原点,故④不正确;
⑤∵函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1,
∴令x1<x2,则f(x1)-f(x2
=f(x2+(x1-x2))-f(x2
=f(x2)+f(x1-x2)-1-f(x2)=f(x1-x2)-1,
由于当x<0时f(x)<1,而x1-x2<1,
所以f(x1)-f(x2)<0,故f(x)在R上为增函数.故⑤正确.
故答案为:②③⑤
点评:本题考查命题的真假判断,是中档题.解题时要认真审题,仔细解答,注意反比例函数、二次函数、幂函数、奇函数、抽象函数的性质的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2)和实数λ∈(0,1),总有f(λx1+(1-λ)x2)<λf(x1)+(1-λ)f(x2),则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f(x)>0成立(f(x)是函数f(x)导函数的导函数),则以下结论正确的有
①④
①④

①f(x)=
2x+2014
3x+7
,x∈[0,2014]是严格下凸函数.
②设x1,x2∈(0,
π
2
)且x1≠x2,则有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)

③若f(x)是区间I上的严格下凸函数,对任意x0∈I,则都有f(x)>f′(x0)(x-x0)+f(x0
④f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是严格下凸函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下结论正确的有
②③⑤
②③⑤
(写出所有正确结论的序号)
①函数y=
1
x
在(-∞,0)∪(0,+∞)上是减函数;
②对于函数f(x)=-x2+1,当x1≠x2时,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
)

③已知幂函数的图象过点(2,2
3
5
)
,则当x>1时,该函数的图象始终在直线y=x的下方;
④奇函数的图象必过坐标原点;
⑤函数f(x)对任意实数x,y,都有f(x+y)=f(x)+f(y)-1,且当x<0时,f(x)<1,则f(x)在R上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下结论正确的有
②③
②③
(写出所有正确结论的序号)
①函数y=
1
x
在(-∞,0)∪(0,+∞)上是减函数;
②对于函数f(x)=-x2+1,当x1≠x2时,都有
f(x1)+f(x2)
2
<f(
x1+x2
2
);
③已知幂函数的图象过点(2,2 
3
5
),则当x>1时,该函数的图象始终在直线y=x的下方;
④奇函数的图象必过坐标原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

以下结论正确的有(    )

(1)如果一事件发生的机会只有十万分之一,那么它就不可能发生;

(2)如果一事件发生的机会达到99.5%,那么它就必然发生;

(3)如果一件事不是不可能发生的,那么它就必然发生;

(4)如果一件事不是必然发生的,那么它就不可能发生.

A.0个                 B.1个                C.2个                D.3个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设f(x)为定义在区间I上的函数.若对I上任意两点x1,x2(x1≠x2)和实数λ∈(0,1),总有f(λx1+(1-λ)x2)<λf(x1)+(1-λ)f(x2),则称f(x)为I上的严格下凸函数.若f(x)为I上的严格下凸函数,其充要条件为:对任意x∈I有f(x)>0成立(f(x)是函数f(x)导函数的导函数),则以下结论正确的有______.
①f(x)=
2x+2014
3x+7
,x∈[0,2014]是严格下凸函数.
②设x1,x2∈(0,
π
2
)且x1≠x2,则有tan(
x1+x2
2
)>
1
2
(tanx1+tanx2)

③若f(x)是区间I上的严格下凸函数,对任意x0∈I,则都有f(x)>f′(x0)(x-x0)+f(x0
④f(x)=
1
6
x3
+sinx,(x∈(
π
6
π
3
))是严格下凸函数.

查看答案和解析>>

同步练习册答案