已知.
(1)时,求
的极值
(2)当时,讨论
的单调性。
(3)证明:(
,
,其中无理数
)
科目:高中数学 来源: 题型:解答题
(本题满分14分)
已知函数,
,
(Ⅰ)当时,若
在
上单调递增,求
的取值范围;
(Ⅱ)求满足下列条件的所有实数对:当
是整数时,存在
,使得
是
的最大值,
是
的最小值;
(Ⅲ)对满足(Ⅱ)的条件的一个实数对,试构造一个定义在
,且
上的函数
,使当
时,
,当
时,
取得最大值的自变量的值构成以
为首项的等差数列。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数 (1)若
在区间
上是增函数,求实数
的取值范围; (2)若
是
的极值点,求
在
上的最大值;(3)在(2)的条件下,是否存在实数
,使得函数
的图像与函数
的图象恰有3个交点?若存在,请求出实数
的取值范围;若不存在,试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)
已知二次函数,直线
,直线
(其中
,
为常数);.若直线
1、
2与函数
的图象以及
、
轴与函数
的图象所围成的封闭图形如图阴影所示.
(Ⅰ)求、
、
的值;
(Ⅱ)求阴影面积关于
的函数
的解析式;
(Ⅲ)若问是否存在实数
,使得
的图象与
的图象有且只有两个不同的交点?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的图象过点
,且在
内
单调递减,在上单
调递增.
(1)求的解析式;
(2)若对于任意的,不等式
恒成立,试问
这样的是否存在.若存在,请求出
的范围,若不存在,说明理由
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com