【题目】设函数,已知对任意,都有,且成立.令,其中为常数.
(1)当时,求函数的所有零点;
(2)当时,求函数的最小值.
【答案】(1),,.(2)当时,;当时,.
【解析】
(1)由一元二次不等式在实数集上恒成立可构造不等式组求得,由二次函数关于对称可求得,进而得到;通过分类讨论可得解析式,令,解方程可求得所有零点;
(2)分类讨论得到解析式,通过对二次函数对称轴位置的分类讨论可得到在不同情况下的单调性,由单调性可确定可能的最小值点,通过对最小值点的函数值的大小的进一步讨论可最终确定最小值.
(1)恒成立,恒成立,,
即,,,
,的图象关于直线对称,,解得:,
.
当时,,
由得:或;
由得:;
的所有零点为,,.
(2)由得:,.
,.
①若,即,则在上单调递减,在上单调递增,
.
②若,即,则在和上单调递减,在和上单调递增.
当时,;
当时,.
,
当时,,;
当时,,.
综合①②知,当时,;当时,.
科目:高中数学 来源: 题型:
【题目】已知椭圆E: (a﹥b﹥0)的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆E上.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设不过原点O且斜率为的直线l与椭圆E交于不同的两点A,B,线段AB的中点为M,直线OM与椭圆E交于C,D,证明:|MA|·|MB|=|MC|·|MD|.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=ax+(a,b∈Z),曲线y=f(x)在点(2,f(2))处的切线方
程为y=3.
(1)求f(x)的解析式;
(2)证明:曲线y=f(x)上任一点的切线与直线x=1和直线y=x所围三角形的面积为定值,
并求出此定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线的方程为.
(1)若在两坐标轴上的截距相等,求的方程;
(2)若不经过第二象限,求实数的取值范围;
(3)若与轴正半轴的交点为,与轴负半轴的交点为,求(为坐标原点)面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面四个关于圆锥曲线的命题中,其中真命题为( )
A.设A、B为两个定点,K为非零常数,若,则动点P的轨迹是双曲线
B.方程的两根可分别作为椭圆和双曲线的离心率
C.双曲线与椭圆有相同的焦点
D.已知抛物线,以过焦点的一条弦AB为直径作圆,则此圆与准线相切
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥A-BCDE中,底面BCDE为矩形,侧面ABC底面BCDE,BC=2,CD=,AB=AC
(1)证明.
(2)设侧面ABC为等边三角形,求二面角C-AD-E的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为迎接“五一”节的到来,某单位举行“庆五一,展风采”的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘“Enter”键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数和,并在屏幕的下方计算出的值.现规定:每个人去按“Enter”键,当显示出来的小于时则参加环节,否则参加环节.
(1)求这6人中恰有2人参加该节目环节的概率;
(2)用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com