精英家教网 > 高中数学 > 题目详情

一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 

缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:

转速x(转/秒)

16

14

12

8

每小时生产有缺

点的零件数y(件)

11

9

8

5

(1)对变量y与x进行相关性检验;

(2)如果y与x有线性相关关系,求回归直线方程;

(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?

(1)y与x有很强的线性相关关系(2)=0.728 6x-0.857 1(3)机器的转速应控制在14.901 3转/秒以下


解析:

(1)=12.5, =8.25,

=438,4=412.5,

=660,=291,

所以r==

=≈0.995 4.

因为r>r0.05,所以y与x有很强的线性相关关系.

(2)=0.728 6x-0.857 1.

(3)要使≤100.728 6x-0.857 1≤10,

所以x≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) 16 14 12 8
每小时生产有缺点的零件数y(件) 11 9 8 5
(1)利用散点图或相关系数r的大小判断变量y对x是否线性相关?为什么?
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(最后结果精确到0.001.参考数据:
656.25
≈25.617
,16×11+14×9+12×8+8×5=438,162+142+122+82=660,112+92+82+52=291).

查看答案和解析>>

科目:高中数学 来源: 题型:

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下面为抽样试验的结果:当转速x是16,14,12,8时,每小时生产有缺点的零件数y分别是11,9,8,5
(1)如果y对x有线性相关关系,求回归直线方程;
(2)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么机器的运转速度应控制在什么范围内?(精确到0.0001)参考公式:线性回归方程的系数公式:
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n(
.
x
)
2
a
=
.
y
-
b
.
x
  

查看答案和解析>>

科目:高中数学 来源: 题型:

一台机器使用的时间较长,但还可以使用,它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有缺点零件的多少,随机器的运转的速度而变化,下表为抽样试验的结果:
转速x(转/秒) 2 4 5 6 8
每小时生产有缺点的零件数y(件) 30 40 60 50 70
(1)画散点图;
(2)如果y对x有线性相关关系,求回归直线方程;
(3)若实际生产中,允许每小时的产品中有缺点的零件最多为89个,那么机器的运转速度应控制在什么范围内?(参考数值:
5
i
xiyi=1380
5
i
xi2=145

查看答案和解析>>

科目:高中数学 来源: 题型:

一台机器由于使用时间较长,生产的零件有一些会有缺损.按不同转速生产出来的零件有缺损的统计数据如下:
转速x(转/s) 18 16 14 12
每小时生产有缺损零件数y(件) 11 9 7 5
(Ⅰ)作出散点图;
(Ⅱ)如果y与x线性相关,求出回归方程;
(Ⅲ)如果实际生产中,允许每小时的产品中有缺损的零件最多为8个,那么机器运转速度应控制在什么范围内?
用最小二乘法求线性回归方程的系数公式:
b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n(
.
x
)
2
a=
.
y
-b
.
x

查看答案和解析>>

同步练习册答案