精英家教网 > 高中数学 > 题目详情

已知,且.
求值:(1);
(2).

(1);(2) .

解析试题分析:解题思路:(1)由得出关于的关系,利用求得;(2)利用,分子、父母同除以,得到的式子,再代入求值.规律总结:平面向量与三角函数结合是命题热点,主要借助平面向量平行、垂直的条件推得关于的关系式,然后利用三角函数的有关公式或性质进行变换.
试题解析:(1),,.
(2).
考点:平面向量平行的判定、同角三角函数基本关系式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知向量,若函数.
(1)求的最小正周期;
(2)若,求的最大值及相应的值;
(3)若,求的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(wx+j)(w>0,<j<0)图象上的任意两点,且角j的终边经过点P(l,-),若|f(x1)-f(x2)|=4时,|x1-x2|的最小值为.
(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当x∈时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(1)化简
(2)若是第三象限角,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)用  表示的值;
(2)求函数的最大值和最小值.
(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知,且.求:
(1)的值;(2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,内角所对边长分别为
(1)求的最大值及的取值范围;
(2)求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=2cos2x+sin2x-+1(x∈R).
(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间;
(3)若x∈[-],求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

设函数.若是奇函数,则__________.

查看答案和解析>>

同步练习册答案