精英家教网 > 高中数学 > 题目详情
2.若变量x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则目标函数z=2x+y 的最大值为(  )
A.3B.4C.5D.6

分析 确定不等式表示的平面区域,明确目标函数的几何意义,即可求得最大值

解答 解:已知不等式组表示的区域如图,由目标函数的几何意义得到,当直线z=2x+y经过图中B时,在y轴的截距最大,即z最大,又B(2,1),
所以z是最大值为2×2+1=5;
故选:C.

点评 本题考查线性规划知识,考查数形结合的数学思想,考查学生的计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.空间直角坐标系中点P(1,3,5)关于原点对称的点P′的坐标是(  )
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.${∫}_{-2}^{2}$(sinx+ex)dx=e2-e-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知F1、F2是椭圆M:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点,F1(-1,0),且椭圆M过点(1,$\frac{2\sqrt{3}}{3}$).
(Ⅰ)求椭圆M的标准方程;
(Ⅱ)过F1、F2分别作直线l1与l2,l1交椭圆于B,D两点,l2交椭圆于A,C两点,且l1⊥l2,若四边形ABCD的面积为$\frac{96}{25}$,求直线l1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设全集U=R,集合M={x|x2+x-2>0},N={x|{2x-1≤$\frac{1}{2}$},则(∁UM)∩N=(  )
A.[-2,0]B.[-2,1]C.[0,1]D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x3-$\frac{1}{x}$)4的展开式中x8的系数为-4.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为(  )
A.8B.9C.$\frac{47}{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对于非零复数a,b,c,有以下七个命题:
①a+$\frac{1}{a}$≠0;
②若a=-$\overline{a}$,$\overline{a}$为a的共轭复数,则a为纯虚数;
③(a+b)2=a2+2ab+b2
④若a2=ab,则a=b;
⑤若|a|=|b|,则a=±b;
⑥若a2+b2+c2>0,则a2+b2>-c2
⑦若a2+b2>-c2,则a2+b2+c2>0.
其中,真命题的个数为(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

同步练习册答案