【题目】如图,定义:以椭圆中心为圆心,长轴为直径的圆叫做椭圆的“辅圆”.过椭圆第一象限内一点P作x轴的垂线交其“辅圆”于点Q,当点Q在点P的上方时,称点Q为点P的“上辅点”.已知椭圆上的点的上辅点为.
(1)求椭圆E的方程;
(2)若的面积等于,求上辅点Q的坐标;
(3)过上辅点Q作辅圆的切线与x轴交于点T,判断直线PT与椭圆E的位置关系,并证明你的结论.
【答案】(1);(2);(3)直线PT与椭圆相切,证明见解析
【解析】
(1)根据定义直接求解即可;(2)设点,,则点,,则可得到,再根据的面积可得到,进一步与椭圆方程联立即得解;(3)表示出直线的方程,与椭圆方程联立,再判断△即可得出结论.
(1)椭圆上的点的上辅点为,
辅圆的半径为,椭圆长半轴为,
将点代入椭圆方程中,解得,
椭圆的方程为;
(2)设点,,则点,,将两点坐标分别代入辅圆方程和椭圆方程可得,,,
故,即,
又,则,
将与联立可解得,则,
点的坐标为;
(3)直线与椭圆相切,证明如下:
设点,,由(2)可知,,
与辅圆相切于点的直线方程为,则点,
直线的方程为:,整理得,
将与椭圆联立并整理可得,,
由一元二次方程的判别式,可知,上述方程只有一个解,故直线与椭圆相切.
科目:高中数学 来源: 题型:
【题目】已知三棱锥的展开图如图二,其中四边形为边长等于的正方形,和均为正三角形,在三棱锥中:
(1)证明:平面平面;
(2)若是的中点,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:极坐标与参数方程
在平面直角坐标系中,曲线的参数方程为(为参数).
(1)求曲线的普通方程;
(2)经过点(平面直角坐标系中点)作直线交曲线于, 两点,若恰好为线段的三等分点,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列满足,(是自然对数的底数),且,令().
(1)证明:;
(2)证明:是等比数列,且的通项公式是;
(3)是否存在常数,对任意自然数均有成立?若存在,求的取值范围,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与抛物线交于,两点,与椭圆交于,两点,直线,,,(为坐标原点)的斜率分别为,,,,若.
(1)是否存在实数,满足,并说明理由;
(2)求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知极坐标系的极点在平面直角坐标系的原点处,极轴与轴的正半轴重合,且长度单位相同;曲线 的方程是,直线的参数方程为(为参数,),设, 直线与曲线交于 两点.
(1)当时,求的长度;
(2)求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知曲线C1:, 曲线C2:,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系. 并在两种坐标系中取相同的单位长度。
(1)写出曲线C1,C2的极坐标方程;
(2)在极坐标系中,已知点A是射线l:与C1的交点,点B是l与C2的异于极点的交点,当在区间上变化时,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com