精英家教网 > 高中数学 > 题目详情
4.不等式log0.3(x2-3x-4)-log0.3(2x+10)>0的解集是(  )
A.(-2,-1)B.(4,7)C.(-2,-1)∪(4,7)D.

分析 要解的不等式即不等式log0.3(x2-3x-4)>log0.3(2x+10),故0<x2-3x-4<2x+10,由此求得x的范围.

解答 解:不等式log0.3(x2-3x-4)-log0.3(2x+10)>0,即 不等式log0.3(x2-3x-4)>log0.3(2x+10),
故0<x2-3x-4<2x+10,求得-2<x<-1,或 4<x<7,
故选:C.

点评 本题主要考查对数函数的单调性和特殊点,对数函数的定义域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知x、y满足y=3-$\sqrt{4x-{x}^{2}}$,则使x+2y+2a<0恒成立的a的取值范围是(  )
A.[$\sqrt{5}-4$,$\sqrt{5}+4$]B.(-∞,-5]C.[-5,+∞)D.(-∞,-5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.函数y=lg(x-1)+lg(x-2)的定义域为M,函数y=lg(x2-3x+2)的定义域为N,则 (  )
A.M?NB.N?MC.M=ND.M∩N=∅

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若抛物线y=2x2上两点A(x1,y1)、B(x2,y2)关于直线y=x+$\frac{3}{2}$对称,则x1•x2=(  )
A.$\frac{5}{2}$B.2C.-$\frac{1}{2}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知集合A={x|lg(x-1)<1},B={x|$\frac{x+2}{4-x}$≥0},则A∩B=(  )
A.{x|-2≤x≤4}B.{x|4<x<11}C.{x|1<x<4}D.{x|-2≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在等比数列{an}中,Sn是其前n项和,已知a3=2S2+1,a4=2S3+1,则S4=(  )
A.4B.16C.20D.40

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设实数a≤2,已知函数f(x)=$\frac{a+a(2-a)^{2}}{ax-{x}^{2}}$,x∈(0,a),若存在a,x0,使得f(x0)≤2,则x0的取值集合为{1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知平面直角坐标系xOy中,已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点和上顶点分别为A,B,椭圆的离心率为$\frac{\sqrt{3}}{2}$,且过点(1,$\frac{\sqrt{3}}{2}$).
(1)求椭圆的标准方程;
(2)如图,若直线l与该椭圆交于点P,Q两点,直线BQ,AP的斜率互为相反数.
①求证:直线l的斜率为定值;
②若点P在第一象限,设△ABP与△ABQ的面积分别为S1,S2,求$\frac{{S}_{1}}{{S}_{2}}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设数列{an}的前n项和为Sn,且Sn=2n-1.数列{bn}满足b1=2,bn+1-2bn=8an
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明:数列$\{\frac{b_n}{2^n}\}$为等差数列,并求{bn}的通项公式.

查看答案和解析>>

同步练习册答案