精英家教网 > 高中数学 > 题目详情
3.函教y=log3(x+2)的图象是由函数y=log3x的图象左平移2个单位长度得到.

分析 根据图图象的平移.左加右减得到答案.

解答 解:要得到函数y=log3(x+2)的图象,只需将函数y=log3x图象上的所有点向左平移2个单位长度,
故答案为:左平移2个单位长度

点评 本题考查函数的图象的平移变换,掌握平移变换的规律是关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.设f(x)=$\underset{lim}{n→∞}$$\frac{1+x}{1+{x}^{2n}}$,求f(x)的间断点,并说明间断点所属类型.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在(1+x)6(1+y)4的展开式中,xy2项的系数是36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若不等式x2+(a-3)x+1≥0对一切x∈$({0,\frac{1}{2}}]$都成立,则a的最小值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.满足条件{(x,y)|$\sqrt{(x-3)^{2}+{y}^{2}}$-$\sqrt{(x+3)^{2}+{y}^{2}}$=6}的点P(x,y)的轨迹是射线AP,方程为y=0(x≤-3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C的中心在原点,焦点在x轴上,长轴长是短轴长的$\sqrt{2}$倍,且经过点M(2,$\sqrt{2}$).
(1)求椭圆C的方程.
(2)过圆O:x2+y2=$\frac{8}{3}$上任意一点作圆的一条切线交椭圆C于A,B两点.
①求证:OA⊥OB;
②求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.过点P(8,3)的直线与双曲线9x2-16y2=144相交于A,B两点,求弦AB中点的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2x,且f(a)=3,函数g(x)=2ax-$\frac{3}{2}$•9x
(1)求常数a的值,并求g(x)的解析式;
(2)当x∈[-2,1]时,求g(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.圆心在y轴上,半径为5且过点A(3,-4)的圆的方程为x2+y2=25或x2+(y+8)2=25.

查看答案和解析>>

同步练习册答案