【题目】已知,定点,定直线和上的动点满足:在直线的同侧,点在直线的另一侧.以为焦点作与直线相切的椭圆,且当在上运动时,椭圆的长轴长为定值.
(1)求直线的方程;
(2)对于第一象限内任意2012个在椭圆上的点,是否一定可以将它们分成两组,使得其中一组点的横坐标之和不大于2013,另一组点的纵坐标之和不大于2013?请证明你的结论.
科目:高中数学 来源: 题型:
【题目】平面直角坐标系中,直线的参数方程是(为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.将曲线上每一点的横坐标伸长到原来的两倍(纵坐标不变)得到曲线.
(1)求曲线的直角坐标方程;
(2)已知点,若直线与曲线交于,两点,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x2-mlnx,h(x)=x2-x+a.
(1)当a=0时,f(x)≥h(x)在(1,+∞)上恒成立,求实数m的取值范围;
(2)当m=2时,若函数k(x)=f(x)-h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某次会操活动中,领操员让编号为的名学生排成一个圆形阵,做循环报数,领操员一一记录报数者的编号,并要求报l、2的学生出列,报3的学生留在队列中,并将编号改为此次循环报数中三名学生的编号之和.一直循环报数下去.当操场上剩余的学生人数不超过两名时,报数活动结束.领操员记录最后留在操场的学生编号(例如,编号为的九名学生排成一个圆形阵,报数结束后,只有原始编号为9的学生留在操场,此时,他的编号为45,领操员记录下来的数据分别为l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名学生参加会操.
(1)最后留在场内的学生最初的编号是几号?
(2)求领操员记录下的编号之和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为( )
A.18B.24C.30D.36
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了120人进行调查,经统计男生与女生的人数比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有99%的把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 30 | ||
女 | 15 | ||
合计 | 120 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取8人,求抽取的男生和女生分别为多少人?若从这8人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中n=a+b+c+d
P | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某知名电商在双十一购物狂欢节中成交额再创新高,月日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和“购物评价为满意”的年龄层次频数分布表.年龄层次的频率分布直方图:
“购物评价为满意”的年龄层次频数分布表:
年龄(岁) | |||||
频数 |
(1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);
(2)若年龄在岁以下的称为“青年买家”,年龄在岁以上(含岁)的称为“中年买家”,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?
评价满意 | 评价不满意 | 合计 | |
中年买家 | |||
青年买家 | |||
合计 |
附:参考公式:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com