精英家教网 > 高中数学 > 题目详情

【题目】已知,定点,定直线上的动点满足:在直线的同侧,在直线的另一侧.为焦点作与直线相切的椭圆,且当上运动时,椭圆的长轴长为定值.

(1)求直线的方程;

(2)对于第一象限内任意2012个在椭圆上的点,是否一定可以将它们分成两组,使得其中一组点的横坐标之和不大于2013,另一组点的纵坐标之和不大于2013?请证明你的结论.

【答案】(1)(2)见解析

【解析】

(1)设点关于直线的对称点为.过椭圆与直线的切点.从而, (即椭圆的长轴长)为定值.于是,Q在以为圆心、为半径的圆上.

的任意性及,.故点重合,即直线为线段的中垂线.

注意到,.

因为的中点为,所以,直线的方程为.

(2)可以.

设这2012个点为.

(1)知直线的方程为.

又易知点在直线的下方,,.

不失一般性,不妨设.

(i),则将点分为一组,作为一组符合题意.

(ii),则存在,使得

,.

于是,对任意的,.

将点分为一组,分为一组.则前一组点的横坐标之和不大于2013,后一组点的纵坐标之和不大于2013.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,直线的参数方程是为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.将曲线上每一点的横坐标伸长到原来的两倍(纵坐标不变)得到曲线

1)求曲线的直角坐标方程;

2)已知点,若直线与曲线交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,讨论极值点的个数;

2)若函数有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】外接圆上三段弧的中点依次为,其关于的对称点依次为.若顶点与对应旁切圆切点的连线交于一点 (界心),的垂心证明:在以为直径的圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2mlnxh(x)x2xa.

(1)a0时,f(x)h(x)(1,+∞)上恒成立,求实数m的取值范围;

(2)m2时,若函数k(x)f(x)h(x)在区间(1,3)上恰有两个不同零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某次会操活动中,领操员让编号为名学生排成一个圆形阵,做循环报数,领操员一一记录报数者的编号,并要求报l、2的学生出列,报3的学生留在队列中,并将编号改为此次循环报数中三名学生的编号之和.一直循环报数下去.当操场上剩余的学生人数不超过两名时,报数活动结束.领操员记录最后留在操场的学生编号例如,编号为的九名学生排成一个圆形阵,报数结束后,只有原始编号为9的学生留在操场,此时,他的编号为45,领操员记录下来的数据分别为l,2,3,4,5,6,7,8,9,6,15,24,45).已知共有2011名学生参加会操.

(1)最后留在场内的学生最初的编号是几号?

(2)求领操员记录下的编号之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击新冠病毒,某部门安排甲、乙、丙、丁、戊五名专家到三地指导防疫工作.因工作需要,每地至少需安排一名专家,其中甲、乙两名专家必须安排在同一地工作,丙、丁两名专家不能安排在同一地工作,则不同的分配方法总数为(

A.18B.24C.30D.36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了120人进行调查,经统计男生与女生的人数比为11:13,男生中有30人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

(1)完成列联表,并判断能否有99%的把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

30

15

合计

120

(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取8人,求抽取的男生和女生分别为多少人?若从这8人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:,其中n=a+b+c+d

P

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某知名电商在双十一购物狂欢节中成交额再创新高,日单日成交额达亿元.某店主在此次购物狂欢节期间开展了促销活动,为了解买家对此次促销活动的满意情况,随机抽取了参与活动的位买家,调查了他们的年龄层次和购物满意情况,得到年龄层次的频率分布直方图和购物评价为满意的年龄层次频数分布表.年龄层次的频率分布直方图:

“购物评价为满意”的年龄层次频数分布表:

年龄(岁)

频数

1)估计参与此次活动的买家的平均年龄(同一组中的数据用该组区间的中点值做代表);

2)若年龄在岁以下的称为青年买家,年龄在岁以上(含岁)的称为中年买家,完成下面的列联表,并判断能否有的把握认为中、青年买家对此次活动的评价有差异?

评价满意

评价不满意

合计

中年买家

青年买家

合计

附:参考公式:.

查看答案和解析>>

同步练习册答案