分析 (1)根据平面向量的坐标运算计算即可;
(2)根据线段中点坐标写出即可;
(3)根据平行四边形的对边平行且相等,即可得出$\overrightarrow{OD}$坐标;
(4)根据△ABC的重心坐标即可求出点G的坐标.
解答 解:(1)点A(3,1),点B(2,-1),点C(-2,3),O为原点;
则$\overrightarrow{BC}$=(-4,4),$\overrightarrow{BA}$=(1,2),
∴$\frac{1}{3}$$\overrightarrow{BC}$+$\frac{2}{3}$$\overrightarrow{BA}$=(-$\frac{4}{3}$+$\frac{2}{3}$,$\frac{4}{3}$+$\frac{4}{3}$)=(-$\frac{2}{3}$,$\frac{8}{3}$);
(2)∵x=$\frac{3-2}{2}$=$\frac{1}{2}$,y=$\frac{1+3}{2}$=2,
∴线段AC的中点坐标为($\frac{1}{2}$,2);
(3)设点D(x,y),
由四边形ABCD为平行四边形,
得$\overrightarrow{AD}$=$\overrightarrow{BC}$,
即(x-3,y-1)=(-4,4),
∴$\left\{\begin{array}{l}{x-3=-4}\\{y-1=4}\end{array}\right.$,
解得x=-1,y=5,
∴$\overrightarrow{OD}$坐标为(-1,5);
(4)设△ABC重心G(x,y),
则$\left\{\begin{array}{l}{x=\frac{3+2-2}{3}=1}\\{y=\frac{1-1+3}{3}=1}\end{array}\right.$,
∴$\overrightarrow{OG}$坐标为(1,1).
故答案为:(1)(-$\frac{2}{3}$,$\frac{8}{3}$),(2)($\frac{1}{2}$,2),(3)(-1,5),(4)(1,1).
点评 本题考查了平面向量的坐标运算与线段中点坐标以及平行四边形和三角形的重心坐标公式应用问题,是基础题目.
科目:高中数学 来源: 题型:选择题
A. | a<b<c | B. | b<a<c | C. | c<a<b | D. | a<c<b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 4π | B. | 6π | C. | 8π | D. | 16π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com