精英家教网 > 高中数学 > 题目详情
已知集合S={a1,a2,a3,…,an}(n≥3),集合T⊆{(x,y)|x∈S,y∈S,x≠y}且满足:?ai,aj∈S(i,j=1,2,3,…,n,i≠j),(ai,aj)∈T与(aj,ai)∈T恰有一个成立.对于T定义dT(a,b)=
1,(a,b)∈T
0,(b,a)∈T
lT(ai)=dT(ai,a1)+dT(ai,a2)+…+dT(ai,ai-1)+dT(ai,ai+1)+…+dT(ai,an)(i=1,2,3,…,n).
(Ⅰ)若n=4,(a1,a2),(a3,a2),(a2,a4)∈T,求lT(a2)的值及lT(a4)的最大值;
(Ⅱ)从lT(a1),lT(a2),…,lT(an)中任意删去两个数,记剩下的n-2个数的和为M.求证:M≥
1
2
n(n-5)+3;
(Ⅲ)对于满足lT(ai)<n-1(i=1,2,3,…,n)的每一个集合T,集合S中是否都存在三个不同的元素e,f,g,使得dT(e,f)+dT(f,g)+dT(g,e)=3恒成立,并说明理由.
考点:进行简单的合情推理
专题:综合题,推理和证明
分析:(Ⅰ)利用dT(a2,a1)=0,dT(a2,a3)=0,dT(a2,a4)=1,可得lT(a2)=1;利用lT(a4)=dT(a4,a1)+dT(a4,a2)+dT(a4,a3)≤1+0+1=2,可得lT(a4)取得最大值2;
(Ⅱ)由dT(a,b)的定义可知:dT(a,b)+dT(b,a)=1,设删去的两个数为lT(ak),lT(am),则lT(ak)+lT(am)=
1
2
n(n-1)-M
.由题意可知:lT(ak)≤n-1,lT(am)≤n-1,且当其中一个不等式中等号成立,即可得出结论;
(Ⅲ)对于满足lT(ai)<n-1(i=1,2,3,…,n)的每一个集合T,集合S中都存在三个不同的元素e,f,g,使得dT(e,f)+dT(f,g)+dT(g,e)=3恒成立.
解答: 解:(Ⅰ)因为 (a1,a2),(a3,a2),(a2,a4)∈T,
所以 dT(a2,a1)=0,dT(a2,a3)=0,dT(a2,a4)=1,故lT(a2)=1.…(1分)
因为 (a2,a4)∈T,所以 dT(a4,a2)=0.
所以 lT(a4)=dT(a4,a1)+dT(a4,a2)+dT(a4,a3)≤1+0+1=2.
所以 当(a2,a4),(a4,a1),(a4,a3)∈T时,lT(a4)取得最大值2.…(3分)
(Ⅱ)由dT(a,b)的定义可知:dT(a,b)+dT(b,a)=1.
所以 
n
i=1
lT(ai)=[dT(a1a2)+dT(a2a1)]+[dT(a1a3)+dT(a3a1)]
+…+[dT(a1an)+dT(ana1)]+…+[dT(an-1an)+dT(anan-1)]
=
C
2
n
=
1
2
n(n-1)
.…(6分)
设删去的两个数为lT(ak),lT(am),则lT(ak)+lT(am)=
1
2
n(n-1)-M

由题意可知:lT(ak)≤n-1,lT(am)≤n-1,且当其中一个不等式中等号成立,
不放设lT(ak)=n-1时,dT(ak,am)=1,dT(am,ak)=0.
所以 lT(am)≤n-2.…(7分)
所以lT(ak)+lT(am)≤n-1+n-2=2n-3.
所以 lT(ak)+lT(am)=
1
2
n(n-1)-M≤2n-3
,即M≥
1
2
n(n-5)+3
.…(8分)
(Ⅲ)对于满足lT(ai)<n-1(i=1,2,3,…,n)的每一个集合T,集合S中都存在三个不同的元素e,f,g,使得dT(e,f)+dT(f,g)+dT(g,e)=3恒成立,理由如下:
任取集合T,由lT(ai)<n-1(i=1,2,3,…,n)可知,lT(a1),lT(a2),…,lT(an)中存在最大数,不妨记为lT(f)(若最大数不唯一,任取一个).
因为 lT(f)<n-1,
所以 存在e∈S,使得dT(f,e)=0,即(e,f)∈T.
由lT(f)≥1可设集合G={x∈S|(f,x)∈T}≠∅.
则G中一定存在元素g使得dT(g,e)=1.否则,lT(e)≥lT(f)+1,与lT(f)是最大数矛盾.
所以dT(f,g)=1,dT(g,e)=1,即dT(e,f)+dT(f,g)+dT(g,e)=3.…(14分)
点评:本题考查进行简单的合情推理,考查新定义,考查学生分析解决问题的能力,难度大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆中心在原点,焦点在x轴上,离心率e=
2
2
,过椭圆的右焦点且垂直于长轴的弦长为
2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)已知直线l与椭圆相交于P,Q两点,O为原点,且
OP
OQ
.试探究点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两点A(1,0),B(1,
3
),O为坐标原点,点C在第二象限,且∠AOC=120°,设
OC
=-2,
OA
OB
,(λ∈R),则λ等于(  )
A、-1B、2C、1D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差为2,若a1,a4,a13成等比数列,数列{an}前O项和为Sn
(Ⅰ)求an和Sn
(Ⅱ)求数列{
1
Sn
}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=alnx(a>0),e为自然对数的底数.
(Ⅰ)过点A(2,f(2))的切线斜率为2,求实数a的值;
(Ⅱ)当x>0.时,求证:f(x)≥a(1-
1
x
);
(Ⅲ)在区间(1,e)上e 
x
a
-e 
1
a
<0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出a的值是(  )
A、4B、8C、16D、32

查看答案和解析>>

科目:高中数学 来源: 题型:

在△PQR中,若
PQ
PR
=7,|
PQ
-
PR
|=6,则△PQR面积的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面向量
a
=(1,x),
b
=(2,-y),且
a
b
,则|
a
+
b
|的最小值为(  )
A、1
B、
5
C、
7
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点P(2,-1)作圆x2-2x+y2=24的弦AB,使得点P平分弦AB,则弦AB所在直线的方程为
 

查看答案和解析>>

同步练习册答案