精英家教网 > 高中数学 > 题目详情

【题目】如图,已知抛物线.点A,抛物线上的点P(x,y),过点B作直线AP的垂线,垂足为Q

(I)求直线AP斜率的取值范围;

(II)求的最大值

【答案】(I)(-1,1);(II).

【解析】

试题本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力。满分15分。

(Ⅰ)由斜率公式可得AP的斜率为,再由,得直线AP的斜率的取值范围;(Ⅱ)联立直线APBQ的方程,得Q的横坐标,进而表达的长度,通过函数求解的最大值.

试题解析:

(Ⅰ)设直线AP的斜率为k

因为,所以直线AP斜率的取值范围是

(Ⅱ)联立直线APBQ的方程

解得点Q的横坐标是

因为|PA|==

|PQ|=

所以

因为

所以 f(k)在区间上单调递增,上单调递减,

因此当k=时,取得最大值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义在上的函数,如果存在两条平行直线,使得对于任意,都有恒成立,那么称函数是带状函数,若之间的最小距离存在,则称为带宽.

1)判断函数是不是带状函数?如果是,指出带宽(不用证明);如果不是,说明理由;

2)求证:函数)是带状函数;

3)求证:函数)为带状函数的充要条件是.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,若函数有4个零点,则实数的取值范围是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场营销人员进行某商品M市场营销调查发现,每回馈消费者一定的点数,该商品每天的销量就会发生一定的变化,经过试点统计得到以下表:

反馈点数

1

2

3

4

5

销量(百件)/

0. 5

0. 6

1

1. 4

1. 7

1)经分析发现,可用线性回归模型拟合当地该商品销量(百件)与返还点数之间的相关关系. 请用最小二乘法求关于的线性回归方程,并预测若返回6个点时该商品每天销量;

2)若节日期间营销部对商品进行新一轮调整. 已知某地拟购买该商品的消费群体十分庞大,经营销调研机构对其中的200名消费者的返点数额的心理预期值进行了一个抽样调查,得到如下一份频数表:

返还点数预期值区间(百分比)

频数

20

60

60

30

20

10

(ⅰ)求这200位拟购买该商品的消费者对返点点数的心理预期值的样本平均数及中位数的估计值(同一区间的预期值可用该区间的中点值代替;估计值精确到0. 1);

(ⅱ)将对返点点数的心理预期值在的消费者分别定义为欲望紧缩型消费者和欲望膨胀型消费者,现采用分层抽样的方法从位于这两个区间的30名消费者中随机抽取6名,再从这6人中随机抽取2名进行跟踪调查,设抽出的2人中,至少有一个人是欲望膨胀型消费者的概率是多少?

参考公式及数据:①;②.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数), 椭圆C的参数方程为为参数)。在平面直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,点A的极坐标为(2,

(1)求椭圆C的直角坐标方程和点A在直角坐标系下的坐标

(2)直线l与椭圆C交于P,Q两点,求△APQ的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是二次函数,且f0=0fx+1=fx+x+1

1)求fx)的表达式;

2)若fx)>ax∈[﹣11]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,是等腰直角三角形,,D,E分别是AC,AB上的点,,沿DE折起,得到如图2所示的四棱锥,使得

图1 图2

(1)证明:平面平面BCD;

(2)求与平面所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,对任意,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

同步练习册答案