精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,直线,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线

(Ⅰ)求曲线被直线截得的弦长;

(Ⅱ)与直线垂直的直线与曲线相切于点,求点的直角坐标.

【答案】(Ⅰ)(Ⅱ)

【解析】

(Ⅰ)首先把极坐标方程和直角坐标方程之间进行转换,进一步利用点到直线的距离公式和勾股定理的应用求出弦长.

(Ⅱ)利用直线垂直的充要条件的应用求出圆的切线方程,进一步利用直线和曲线的位置关系的应用求出切点的直角坐标.

(Ⅰ)由题意,曲线,可得

又由,可得曲线的直角坐标方程为

,其中圆心坐标为,半径为1

所以圆心到直线的距离

所以曲线被直线截得的弦长为

(Ⅱ)因为直线与直线垂直,设直线的方程为

由直线与曲线相切,可得圆心到直线的距离

解得

所以直线的方程为

设切点,联立方程组,解得

方程组,解得

即切点坐标为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

)讨论的单调性;

)若有两个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2016高考新课标II,理15)有三张卡片,分别写有121323.甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:我与丙的卡片上相同的数字不是1”,丙说:我的卡片上的数字之和不是5”,则甲的卡片上的数字是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,设抛物线方程为 (p0)M为直线上任意一点,过M引抛物线的切线,切点分别为AB.

1)求直线AB轴的交点坐标;

2)若E为抛物线弧AB上的动点,抛物线在E点处的切线与三角形MAB的边MAMB分别交于点,记,问是否为定值?若是求出该定值;若不是请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,要使函数恰有一个零点,则实数的取值范围是( ).

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】春季气温逐渐攀升,病菌滋生传播快,为了确保安全开学,学校按30名学生一批,组织学生进行某种传染病毒的筛查,学生先到医务室进行血检,检呈阳性者需到防疫部门]做进一步检测.学校综合考虑了组织管理、医学检验能力等多万面的因素,根据经验,采用分组检测法可有效减少工作量,具体操作如下:将待检学生随机等分成若干组,先将每组的血样混在一起化验,若结果呈阴性,则可断定本组血样合格,不必再做进一步的检测;若结果呈阳性,则本组中的每名学生再逐个进行检测.现有两个分组方案:方案一:将30人分成5组,每组6人;方案二:将30人分成6组,每组5人.已知随机抽一人血检呈阳性的概率为05%,且每个人血检是否呈阳性相互独立.

(Ⅰ)请帮学校计算一下哪一个分组方案的工作量较少?

(Ⅱ)已知该传染疾病的患病率为045%,且患该传染疾病者血检呈阳性的概率为999%,若检测中有一人血检呈阳性,求其确实患该传染疾病的概率.(参考数据:(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国文明城市是中国所有城市品牌中含金量最高、创建难度最大的一个,是反映城市整体文明水平的综合性荣誉称号,是目前国内城市综合类评比中的最高荣誉,也是最具价值的城市品牌,作为普通市民,既是城市文明的最大受益者,更是文明城市的主要创造者,皖北某市为提高市民对文明城市创建的认识,举办了创建文明城市知识竞赛,从所有答卷中随机抽取400份试卷作为样本,将样本的成绩(满分100分,成绩均为不低于40分的整数)分成六段:后得到如图所示的频率分布直方图.

(Ⅰ)求样本的平均数;

(Ⅱ)现从该样本成绩在两个分数段内的市民中按分层抽样选取6人,求从这6人中随机选取2人,且2人的竞赛成绩之差的绝对值大于20的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线过定点.

1)若直线与圆有交点,求其倾斜角的取值范围;

2)若为圆的两条相互垂直的弦,垂足为,求四边形的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当=0时,求实数的m值及曲线在点(1 )处的切线方程;

2)讨论函数的单调性.

查看答案和解析>>

同步练习册答案