精英家教网 > 高中数学 > 题目详情
设关于x的方程x2-mx-1=0有两个实根α,β,且α<β.定义函数
(1)当α=-1,β=1时,判断f(x)在R上的单调性,并加以证明;
(2)求αf(α)+βf(β)的值.
【答案】分析:(1)根据韦达定理,由α=-1,β=1,可求出m值,进而求出函数f(x)的解析式,根据函数单调性的定义可得答案.
(2)由α,β是方程x2-mx-1=0的两个实根,根据韦达定理可得,代入分别求出f(α),f(β)的值,进而可求αf(α)+βf(β)的值.
解答:解:(1)∵α=-1,β=1,
由韦达定理可得:m=α+β=0
------(2分)
设x1<x2

∵(x2-x1)>0,
当x2,x1>1时,(1-x1x2)<0,此时f(x2)-f(x1)<0,函数为减函数,
当-1<x2,x1<1时,(1-x1x2)>0,此时,函数为增函数,
当x2,x1<-1时,(1-x1x2)<0,此时,函数为减函数,(9分)
(2)∵α,β是方程x2-mx-1=0的两个实根,

===
同理f(β)=
∴αf(α)+βf(β)=α•+β•=1+1=2.(13分)
点评:本题考查的知识点是二次函数的图象和性质,函数的单调性的判断与证明,一元二次方程根与系数的关系(韦达定理),熟练掌握一元二次方程根与系数的关系(韦达定理)是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设关于x的方程x2-(m+i)x-(2+i)=0,m是实数;
(1)若上述方程有实根,求出其实根以及此时实数m的值;
(2)证明:对任意实数m,方程不存在纯虚数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x2-mx-1=0有两个实根α,β,且α<β.定义函数f(x)=
2x-mx2+1

(1)当α=-1,β=1时,判断f(x)在R上的单调性,并加以证明;
(2)求αf(α)+βf(β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x2-(tanθ+i)x-(2+i)=0,若方程有实数根,求锐角θ和实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设关于x的方程x2-mx-1=0 有两个实根α、β,且α<β.定义函数f(x)=
2x-m
x2+1

(1)求αf(α)+βf(β) 的值;
(2)判断f(x) 在区间(α,β) 上的单调性,并加以证明;
(3)若λ,μ 为正实数,求证:|f(
λα+μβ
λ+μ
)-f(
μα+λβ
λ+μ
)|<|f(α)-f(β)|

查看答案和解析>>

科目:高中数学 来源: 题型:

已知z是复数,z+i和
z1-i
都是实数
,(1)求复数z;(2)设关于x的方程x2+x(1+z)-(3m-1)i=0有实根,求纯虚数m.

查看答案和解析>>

同步练习册答案