精英家教网 > 高中数学 > 题目详情

(10分)为了预防流感,某学校对教室用药熏消毒法进行消毒。已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间t(小时)成正比;药物释放完毕后,y与t的函数关系式为,如图所示。

(1)请写出从药物释放开始,每立方米空气中的含药量y(毫克)与时间t(小时)之间的函数关系式;
(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进教室。那么,从药物释放开始,至少需要经过多少小时后,学生才能回到教室。

(1)(2)0.6

解析试题分析:(1)依题意,当,可设y与t的函数关系式为y=kt,
易求得k=10,∴ y=10t,

∴ 含药量y与时间t的函数关系式为…5分
(2)由图像可知y与t的关系是先增后减的,在时,y从0增加到1;
然后时,y从1开始递减。 ,解得t=0.6,
∴至少经过0.6小时,学生才能回到教室
考点:函数应用题
点评:函数应用题的求解关键是:正确理解题意,将实际问题转化为数学问题,通过数学方法计算出相应数据,再还原到实际情景中得到题目的结论

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数是定义在上的奇函数,当时,有(其中为自然对数的底,).
(1)求函数的解析式;
(2)设,求证:当时,
(3)试问:是否存在实数,使得当时,的最小值是3?如果存在,求出实数的值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(1)若时,在其定义域内单调递增,求的取值范围;
(2)设函数的图象与函数的图象交于两点,过线段的中点轴的垂线分别交于点,问是否存在点,使处的切线与处的切线平行?若存在,求的横坐标,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
某企业生产AB两种产品,根据市场调查与预测,A产品的利润与投资成正比,其关系如图1;B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润和投资单位:万元).

(1)分别将AB两种产品的利润表示为投资的函数关系式;
(2)已知该企业已筹集到18万元资金,并将全部投入AB两种产品的生产.
①若平均投入生产两种产品,可获得多少利润?
②问:如果你是厂长,怎样分配这18万元投资,才能使该企业获得最大利润?其最大利润约为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)某工厂有214名工人, 现要生产1500件产品, 每件产品由3个A型零件与1个B型零件配套组成, 每个工人加工5个A型零件与3个B型零件所需时间相同. 现将全部工人分为两组, 分别加工一种零件, 同时开始加工. 设加工A型零件的工人有x人, 在单位时间内每人加工A型零件5k(k∈N*), 加工完A型零件所需时间为g(x), 加工完B型零件所需时间为h (x).
 (Ⅰ) 试比较大小, 并写出完成总任务的时间的表达式;
(Ⅱ) 怎样分组才能使完成任务所需时间最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)某公司生产一种电子仪器的固定成本为20000元,每生产一台仪器需增加投入100元,已知总收益满足函数: ,其中是仪器的月产量
(1)将利润表示为月产量的函数
(2)当月产量为何值时,公司所获利润最大?最大利润是多少元?(总收益=总成本+利润)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
,且
(1)求的最小值及相应 x的值;
(2)若,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数,且不等式的解集为
(1)求的值;
(2)解关于的不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的偶函数,当时,
(1)用分段函数形式写出上的解析式;   
(2)画出函数的大致图象;并根据图像写出的单调区间;

查看答案和解析>>

同步练习册答案