精英家教网 > 高中数学 > 题目详情
已知f(x)=ax,g(x)=bx,当f(x1)=g(x2)=3时,x1>x2,则a与b的大小关系不可能成立的是(  )
分析:根据f(x)=ax,g(x)=bx,当f(x1)=g(x2)=3,利用对数的定义可得x1=loga3,x2=logb3再结合x1>x2利用对数函数的单调性,和a,b与1的关系即可比较出a,b的大小.
解答:解:∵f(x1)=g(x2)=3,
ax1=3,bx2= 3
∴x1=loga3,x2=logb3
∵x1>x2
∴loga3>logb3
∴由换底公式可得
1
log3a
1
log3b

当a>1,b>1时
∴log3a>0,log3b>0
∴log3b>log3a
∴由y=log3x的单调性可得b>a>1
同理验证a>1>b>0,
1>b>a>0,都成立,
故选D.
点评:本题考查指数和对数函数的性质比较大小.解题的关键是要利用x1>x2得到loga3>logb3然后再利用换底公式和讨论的a,b的范围将上式等价变形,比较出大小关系,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=ax+a-x(a>0且a≠1),
(1)证明函数f ( x )的图象关于y轴对称;
(2)判断f(x)在(0,+∞)上的单调性,并用定义加以证明;
(3)当x∈[1,2]时函数f (x )的最大值为
103
,求此时a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax+b(a>0且a≠1,b为常数)的图象经过点(1,1)且0<f(0)<1,记m=
1
2
[f-1(x1)+f-1(x2)]
n=f-1(
x1+x2
2
)
(x1、x2是两个不相等的正实数),试比较m、n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知f(x)=ax+a-x,若f(1)=3,,求f(2)的值.
(2)设函数f(x)=log3(ax-bx),且f(1)=1,f(2)=log312.求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=ax(a>1),g(x)=bx(b>1),当f(x1)=g(x2)=2时,有x1>x2,则a,b的大小关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•新疆模拟)已知f(x)=ax-lnx,x∈(0,e],g(x)=
lnx
x
,其中e是自然对数的底,a∈R.
(Ⅰ)a=1时,求f(x)的单调区间、极值;
(Ⅱ)是否存在实数a,使f(x)的最小值是3,若存在,求出a的值,若不存在,说明理由;
(Ⅲ)在(1)的条件下,求证:f(x)>g(x)+
1
2

查看答案和解析>>

同步练习册答案