已知圆C过原点且与相切,且圆心C在直线上.
(1)求圆的方程;(2)过点的直线l与圆C相交于A,B两点, 且, 求直线l的方程.
(1) (2) x=2或4x-3y-2=0.
解析试题分析:(1)由题意圆心到直线的距离等于半径, 再利用点到直线的距离公式解出圆心坐标和半径即可.(2)由题知,圆心到直线l的距离为1.分类讨论:当l的斜率不存在时,l:x=2显然成立 ;若l的斜率存在时,利用点到直线的距离公式,解得k ;综上,直线l的方程为x=2或4x-3y-2=0.
(1)由题意设圆心 ,则C到直线的距离等于 ,, 解得, ∴其半径
∴圆的方程为 (6分)
(2)由题知,圆心C到直线l的距离. (8分)
当l的斜率不存在时,l:x=2显然成立 (9分)
若l的斜率存在时,设,由得,解得,
∴. (11分)
综上,直线l的方程为x=2或4x-3y-2=0. (12分)
考点:圆的方程;点到直线的距离公式.
科目:高中数学 来源: 题型:解答题
将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛两次,将得到的点数分别记为a,b.
(1)求满足条件a+b≥9的概率;
(2)求直线ax+by+5=0与x2+y2=1相切的概率
(3)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线,圆.
(1)求直线被圆所截得的弦长;
(2)如果过点的直线与直线垂直,与圆心在直线上的圆相切,圆被直线分成两段圆弧,且弧长之比为,求圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在平面直角坐标系中,曲线的参数方程为,(其中为参数,),在极坐标系(以坐标原点为极点,以轴非负半轴为极轴)中,曲线的极坐标方程为.
(1)把曲线和的方程化为直角坐标方程;
(2)若曲线上恰有三个点到曲线的距离为,求曲线的直角坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知直线l:2x+y+2=0及圆C:x2+y2=2y.
(1)求垂直于直线l且与圆C相切的直线l′的方程;
(2)过直线l上的动点P作圆C的一条切线,设切点为T,求|PT|的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系中,点,直线.设圆的半径为,圆心在上.
(1)若圆心也在直线上,过点作圆的切线,求切线的方程;
(2)若圆上存在点,使,求圆心的横坐标的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知圆x2+y2-6mx-2(m-1)y+10m2-2m-24=0(m∈R).
(1)求证:不论m取什么值,圆心在同一直线l上;
(2)与l平行的直线中,哪些与圆相交,相切,相离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com