精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,平面的中点.

1)求证:平面

2)求三棱锥的体积.

【答案】1)证明见解析;(2

【解析】

(1)取的中点,先证明四边形是平行四边形,可得,只需证平面即可,而由已知易证平面,从而可证得,而由等腰三角形的性质可证得,由此可证得平面

2)先在中利用勾股定理求出的长,再在中,求出,从而可得的长,而的中点,所以,在中,再利用勾股定理求出,而由(1)可知平面,所以,代值可得答案.

1)证明:如下图,取的中点,连接.

的中点,则的中位线.

所以.

所以.

所以四边形是平行四边形.

所以.

因为的中点,

所以.

因为

所以.

因为平面,所以.

,所以平面.

所以.

,所以平面.

,所以平面.

2)因为

所以由勾股定理得.

所以.

所以.

由(1)得,平面,所以.

所以.

由(1)得,平面

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某饲料厂原有陈粮10吨,又购进新粮x吨,现将粮食总库存量的一半精加工为饲料.若被精加工的新粮最多可用吨,被精加工的陈粮最多可用y2吨,记,则函数的图象为(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为轴上方的点在抛物线上,且,直线与抛物线交于两点(点不重合),设直线的斜率分别为.

(Ⅰ)求抛物线的方程;

(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数

1的极小值点;

2)函数有且只有1个零点;

3恒成立;

4)设函数,若存在区间,使上的值域是,则

上述说法正确的序号为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区抽取50户居民进行月用电量调查,发现其用电量都在50到350度之间,将用电量的数据绘制成频率分布直方图如下.

(1)求频率分布直方图中的值并估计这50户用户的平均用电量;

(2)若将用电量在区间内的用户记为类用户,标记为低用电家庭,用电量在区间内的用户记为类用户,标记为高用电家庭,现对这两类用户进行问卷调查,让其对供电服务进行打分,打分情况见茎叶图:

①从类用户中任意抽取3户,求恰好有2户打分超过85分的概率;

②若打分超过85分视为满意,没超过85分视为不满意,请填写下面列联表,并根据列联表判断是否有的把握认为“满意度与用电量高低有关”?

满意

不满意

合计

类用户

类用户

合计

附表及公式:

<>0.050

0.010

0.001

3.841

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设一个袋子里有红、黄、蓝色小球各一个现每次从袋子里取出一个球(取出某色球的概率均相同),确定颜色后放回,直到连续两次均取出红色球时为止,记此时取出球的次数为ξ,则ξ的数学期望为_____ .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图的几何体中,四边形为长方形,平面平面,且上一点,且.

1)求证:平面

2)若,求此多面体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,底面ABCD为直角梯形,ABCDABADPA⊥平面ABCDE是棱PC上一点.

1)证明:平面ADE⊥平面PAB.

2)若PE4ECO为点E在平面PAB上的投影,ABAP2CD2,求四棱锥PADEO的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的离心率为,左、右焦点分别为,点在椭圆上,的周长为

1)求椭圆的方程;

2)已知直线l经过点,且与椭圆交于不同的两点,若为坐标原点)成等比数列,判断直线的斜率是否为定值?若是,请求出该定值;若不是,请说明理由.

查看答案和解析>>

同步练习册答案