精英家教网 > 高中数学 > 题目详情
6.计算:log5100+log50.25的值是(  )
A.0B.1C.2D.4

分析 利用对数性质、运算法则求解.

解答 解:log5100+log50.25=log525=2.
故选:C.

点评 本题考查对数式化简求值,是基础题,解题时要认真审题,注意对数性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若Sn=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…+sin$\frac{nπ}{7}$(n∈N+),则在S1,S2,…,S2017中,值为零的个数是(  )
A.143B.144C.287D.288

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知全集U=R,集合A={x|x2+x-6>0},B={y|y≤3},则(∁UA)∩B=(  )
A.[-3,3]B.[-1,2]C.[-3,2]D.(-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在平面直角坐标系xOy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为$\frac{1}{2}$,点P为椭圆上一点,且△PF1F2的周长为12,那么C的方程为(  )
A.$\frac{{x}^{2}}{25}$+y2=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{24}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知m,n是两条不同的直线,α,β是两个不同的平面,给出下列四个命题,错误的命题是(  )
A.若m∥α,m∥β,α∩β=n,则m∥nB.若α⊥β,m⊥α,n⊥β,则m⊥n
C.若α⊥β,α⊥γ,β∩γ=m,则m⊥αD.若α∥β,m∥α,则m∥β

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l:$\sqrt{2}ρsin(θ\right.$$+\frac{π}{4})=t$=t经过点$P({4\sqrt{2},\frac{π}{4}})$,曲线C:ρ2(1+3sin2θ)=4.
(Ⅰ)求直线l和曲线C的直角坐标方程;
(Ⅱ)若点Q为曲线C上任意一点,且点Q到直线l的距离表示为d,求d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线C:$\left\{\begin{array}{l}x=\frac{8k}{{1+{k^2}}}\\ y=\frac{{2(1-{k^2})}}{{1+{k^2}}}\end{array}\right.$(k为参数)和直线l:$\left\{\begin{array}{l}x=2+tcosθ\\ y=1+tsinθ\end{array}\right.$(t为参数).
(1)将曲线C的方程化为普通方程;
(2)设直线l与曲线C交于A,B两点,且P(2,1)为弦AB的中点,求弦AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设m、n是两条不同的直线,α、β是两个不同的平面,下列命题正确的是(  )
A.若m?α,n?α,且m、n是异面直线,那么n与α相交
B.若α∩β=m,n∥m,且n?α,n?β,则n∥α且n∥β
C.若m?α,n?α,且m∥β,n∥β,则α∥β
D.若m∥α,n∥β,且α∥β,则m∥n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,已知菱形ABCD与直角梯形ABEF所在的平面互相垂直,其中BE∥AF,AB⊥AF,AB=BE=$\frac{1}{2}$AF=2,∠CBA=$\frac{π}{3}$.
(Ⅰ)求证:AF⊥BC;
(Ⅱ)线段AB上是否存在一点G,使得直线FG与平面DEF所成的角的正弦值为$\frac{\sqrt{93}}{31}$,若存在,求AG的长;若不存在,说明理由.

查看答案和解析>>

同步练习册答案