精英家教网 > 高中数学 > 题目详情
4.有两个不透明的箱子,每个箱子里都装有3个完全相同的小球,球上分别标有数字1,2,3.甲从其中一个箱子中随机摸出一个球,乙从另一个箱子中随机摸出一个球,谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),则甲没有获胜的概率为$\frac{2}{3}$.

分析 甲从其中一个箱子中摸出一球,乙从另一个箱子中摸出一球共有9种结果,列举出所有的结果和甲摸出的球标的数字不比乙大的事件数,得到概率.

解答 解:甲从其中一个箱子中摸出一球,乙从另一个箱子中摸出一球共有9种结果,列举如下:
(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),
其中甲摸出的球标的数字不比乙大共有(1,1),(1,2),(1,3),(2,2),(2,3),(3,3),共6种,
记事件A={甲没有获胜},
∴P(A)=$\frac{6}{9}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$

点评 本题考查概率的意义和用列举法来列举出所有的事件数,本题解题的关键是不重不漏的列举出所有的事件数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,g(x)=x2-2af(x)(a∈R且a≠0).
(1)若a=1,求函数g(x)在区间[1,2]上的最小值;
(2)若f(x)<g(x)在x∈(1,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,内角A,B,C所对边分别为a,b,c,且$\frac{c-b}{c-a}$=$\frac{sinA}{sinC+sinB}$.
(1)求角B的大小;
(2)如果b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=$\frac{\sqrt{2}}{2}$cos(2x+$\frac{π}{4}$)+sin2x
(1)求f(x)的最小正周期和单调增区间;
(2)设函数g(x)对任意x∈R,有$g(x+\frac{π}{2})=g(x)$,且当$x∈[{0,\frac{π}{2}}]$时,g(x)=$\frac{1}{2}$-f(x),求g(x)在区间[-π,0]上的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.同时掷两个骰子,向上的点数不相同的概率为(  )
A.$\frac{5}{6}$B.$\frac{1}{6}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-1,-2),$\overrightarrow{c}$=(2,1),则($\overrightarrow{a}$•$\overrightarrow{b}$)$\overrightarrow{c}$=(-16,-8),$\overrightarrow{a}$($\overrightarrow{b}$•$\overrightarrow{c}$)=(-8,-12).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.若不等式(m-2)x2+2(m-2)x-4<0的解集为R,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.校庆期间,某同学从2本相同的画册和3个相同的纪念章中,任取4件作为礼物赠送给4为校友,每人1件,则不同的赠送方法共有(  )
A.4种B.10种C.18种D.20种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知实系数多项式f(x)=x4+ax3+bx2+cx+d满足f(1)=2,f(2)=4,f(3)=6,则f(0)+f(4)的所有可能值集合为{32}.

查看答案和解析>>

同步练习册答案