精英家教网 > 高中数学 > 题目详情
设不等式组所表示的平面区域是Ω1,平面区域是Ω2与Ω1关于直线3x-4y-9=0对称,对于Ω1中的任意一点A与Ω2中的任意一点B,|AB|的最小值等于( )
A.
B.4
C.
D.2
【答案】分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件画出满足约束条件的可行域Ω1,根据对称的性质,不难得到:当A点距对称轴的距离最近时,|AB|有最小值.
解答:解:由题意知,所求的|AB|的最小值,
即为区域Ω1中的点到直线3x-4y-9=0的距离的最小值的两倍,
画出已知不等式表示的平面区域,如图所示,
可看出点(1,1)到直线3x-4y-9=0的距离最小,
故|AB|的最小值为
故选B.
点评:利用线性规划解平面上任意两点的距离的最值,关键是要根据已知的约束条件,画出满足约束约束条件的可行域,再去分析图形,根据图形的性质、对称的性质等找出满足条件的点的坐标,代入计算,即可求解.
练习册系列答案
相关习题

科目:高中数学 来源:广东省培正中学2011-2012学年高二第一学期期中考考试数学理科试题 题型:044

已知(x,y)(x,y∈R)为平面上点M的坐标.

(1)设集合P={―4,―3,―2,0},Q={0,1,2},从集合P中随机取一个数作为x,从集合Q中随机取一个数作为y,求点M在y轴上的概率;

(2)设x∈[0,3],y∈[0,4],求点M落在不等式组:所表示的平面区域内的概率.

查看答案和解析>>

同步练习册答案