精英家教网 > 高中数学 > 题目详情
若函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象(部分)如图所示,则ω和φ的取值分别是
 

考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:计算题,三角函数的图像与性质
分析:
1
4
T=π可求得ω,再由(-
π
3
)•ω+φ=0可求得φ,从而可得答案.
解答: 解:由f(x)=sin(ωx+φ)的部分图象可知,
1
4
T=π,
∴T=4π,又T=
ω

∴ω=
1
2

又(-
π
3
)×
1
2
+φ=0,
∴φ=
π
6
,符合0<φ<π.
故答案为:
1
2
π
6
点评:本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,考查识图用图的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合A={x|x2-2x>0},B={x|1<x<
5
},则A∩B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:函数f(x)=x3-ax-1在区间[-1,1]上单调递减命题q:存在x∈R,使等式x2+ax+1=0成立,如果命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2<loga 
1
2
,a的范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了了解本市高中学生的汉字书写水平,在全市范围内随机抽取了近千名学生参加汉字听写考试,将所得数据进行分组,分组区间为:[50,60),[60,70),[70,80),[80,90),[90,100],并绘制出频率分布直方图,如图所示.
(Ⅰ)求频率分布直方图中的a值;从该市随机选取一名学生,试估计这名学生参加考试的成绩低于90分的概率;
(Ⅱ)设A,B,C三名学生的考试成绩在区间[80,90)内,M,N两名学生的考试成绩在区间[60,70)内,现从这5名学生中任选两人参加座谈会,求学生M,N至少有一人被选中的概率;
(Ⅲ)试估计样本的中位数落在哪个分组区间内(只需写出结论).
(注:将频率视为相应的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知tanα=2,分别求出下列各式的值.
(1)sinα;
(2)
4sinα-2cosα
5sinα+3cosα

(3)
1+sinα•cosα
cos2α-sin2α

(4)sinα•cosα.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象与x轴有两个交点,它们之间的距离为4,且满足f(3+x)=f(3-x),该函数的最小值是-3,则
(1)求该函数的解析式;
(2)写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图空间几何体ABCDEF中,四边形ADEF为平行四边形,FB⊥平面ABCD,AB∥CD,AB⊥BC,AB=BC=
1
2
CD.
(1)求证:直线CE∥平面ABF;
(2)求证:平面CDE⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图的形状和尺寸如图所示,则其体积是(  )
A、
64
3
B、
44
3
C、
32
3
D、
32+8
2
3

查看答案和解析>>

同步练习册答案