【题目】如图,在正方体ABCD﹣A1B1C1D1中,E,F分别是棱AA1,AD上的点,且AE=EA1,AFFD.
(1)求证:平面EC1D1⊥平面EFB;
(2)求二面角E﹣FB﹣A的余弦值.
科目:高中数学 来源: 题型:
【题目】2018年国际乒联总决赛在韩国仁川举行,比赛时间为12月13﹣12月16日,在男子单打项目,中国队准备选派4人参加.已知国家一线队共6名队员,二线队共4名队员.
(1)求恰好有3名国家一线队队员参加比赛的概率;
(2)设随机变量X表示参加比赛的国家二线队队员的人数,求X的分布列;
(3)男子单打决赛是林高远(中国)对阵张本智和(日本),比赛采用七局四胜制,已知在每局比赛中,林高远获胜的概率为,张本智和获胜的概率为,前两局比赛双方各胜一局,且各局比赛的结果相互独立,求林高远获得男子单打冠军的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年1月18日,国家禁毒办召开视频会议,部署开展全国禁毒示范城市创建活动,会上,贵阳成功入选为首批全国101个示范创建城市之一.为进一步推进创建工作的开展,贵阳市教育局全面部署了各中小学深入学习禁毒知识的工作.某校据此开展相关禁毒知识测试活动,如图的茎叶图是该校从甲、乙两个班级各随机抽取5名同学在一次禁毒知识测试中的成绩统计
(1)请从统计学角度分析两个班级的同学在禁毒知识学习上的状况;
(2)由于测试难度较大,测试成绩达到87分以上(含87分)者即视为合格,先从茎叶图中达到合格的同学中抽取三人进行成绩分析,试求抽取到的同学中至少有两人来自甲班的概率;
(3)已知本次测试的成绩服从正态分布,该校共有1000名同学参加了测试,求测试成绩在86分到97分之间的人数.
(参考数据,)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某学校在学期结束,为了解家长对学校工作的满意度,对两个班的100位家长进行满意度调查,调查结果如下:
非常满意 | 满意 | 合计 | |
A | 30 | 15 | 45 |
B | 45 | 10 | 55 |
合计 | 75 | 25 | 100 |
(1)根据表格判断是否有的把握认为家长的满意程度与所在班级有关系?
(2)用分层抽样的方法从非常满意的家长中抽取5人进行问卷调查,并在这5人中随机选出2人进行座谈,求这2人都来自同一班级的概率?
附:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,△DAB≌△DCB,E为线段BD上的点,且EA=EB=ED=AB,延长CE交AD于点F.
(1)若G为PD的中点,求证平面PAD⊥平面CGF;
(2)若AD=AP=6,求平面BCP与平面DCP所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,底面是直角梯形,,,且.点是线段上一点,且.
(1)求证:平面平面.
(2)若,在线段上是否存在一点,使得到平面的距离为?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com