精英家教网 > 高中数学 > 题目详情
(文)Sn=1-2+3-4+5-6+…+(-1)n+1•n,则S100+S200+S301等于(  )
A.1B.-1C.51D.52
∵Sn=1-2+3-4+5-6+…+(-1)n+1•n,
∴S100=1-2+3-4+5-6+…+(-100)=(1-2)+(3-4)+…+(99-100)=-1×50=-50,
S200=1-2+3-4+5-6+…+(-200)=(1-2)+(3-4)+…+(199-200)=-1×100=-100,
S301=1-2+3-4+5-6+…+301=1+(3-2)+(5-4)+…+(301-300)=1+150=151,
∴S100+S200+S301=-50-100+151=1,
故选:A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知数列{an}是等差数列,且a1=1,a1+a2+a3=6.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=an2n.求数列{bn}前n项和的公式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知数列{an}的前n项和sn=10n-n2,bn=|an|求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

1
1×3
+
1
2×4
+
1
3×5
+
1
4×6
+…+
1
n(n+2)
=(  )
A.
1
n(n+2)
B.
1
2
(1-
1
n+2
C.
1
2
3
2
-
1
n+1
-
1
n+2
D.
1
2
(1-
1
n+1

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

递增的等比数列{an}的前n项和为Sn,且S2=6,S4=30
(I)求数列{an}的通项公式.
(II)若bn=anlog
1
2
an
,数列{bn}的前n项和为Tn,求Tn+n•2n+1>50成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知{an}是等差数列,其中a10=30,a20=50.
(1)求数列{an}的通项公式;
(2)若bn=an-20,求数列{bn}的前n项和Tn的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

定义一种新运算*,满足n*k=nλk-1(n,k∈N*λ为非零常数).
(1)对于任意给定的k,设an=n*k(n=1,2,3,…),证明:数列{an}是等差数列;
(2)对于任意给定的n,设bk=n*k(k=1,2,3…),证明:数列{bk}是等比数列;
(3)设cn=n*n(n=1,2,3,..),试求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在等比数列{an}中,2a2=a1+a3-1,a1=1.
(1)若数列{bn}满足b1+
b2
2
+
b3
3
+…+
bn
n
=an(n∈N*),求数列{bn}的通项公式;
(2)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

数列的前项和为          ()
A.B.C.D.

查看答案和解析>>

同步练习册答案