精英家教网 > 高中数学 > 题目详情
是定义在正整数集上的函数,且满足:“当成立时,总可推出成立”,那么,下列命题总成立的是 (  )
A.若成立,则成立
B.若成立,则当时,均有成立
C.若成立,则成立
D.若成立,则当时,均有成立
D

试题分析:“当成立时,总可推出成立”是“数学归纳法”的步骤②说明如果 成立则 也成立这种递推关系,所以如果 成立则 都成立.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设数列{an}满足a1=3,an+1=an2-2nan+2,n=1,2,3,…
(1)求a2,a3,a4的值,并猜想数列{an}的通项公式(不需证明);
(2)记Sn为数列{an}的前n项和,试求使得Sn<2n成立的最小正整数n,并给出证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知多项式f(n)=n5n4n3n.
(1)求f(-1)及f(2)的值;
(2)试探求对一切整数nf(n)是否一定是整数?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设n∈N*,f(n)=1++…+,试比较f(n)与的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知是等差数列,N+),
 N+),问Pn与Qn哪一个大?并证明你的结论.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

观察式子: , , ,……则可归纳出式子()(   )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

用数学归纳法证明等式:

对于一切都成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知f(n)=1+++…+(n∈N*),用数学归纳法证明f(2n)>时,f(2k+1)-f(2k)等于   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

观察下列式子  , … … ,则可归纳出_______.

查看答案和解析>>

同步练习册答案