精英家教网 > 高中数学 > 题目详情
4.执行如图所示的程序框图,如果输入n=3,则输出的 S=(  )
A.$\frac{4}{9}$B.$\frac{8}{9}$C.$\frac{3}{7}$D.$\frac{6}{7}$

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S值,模拟程序的运行过程,将程序运行过程中变量的值的变化情况进行分析,利用裂项法即可计算得解.

解答 解:模拟程序的运行,可得
n=3,i=1,S=0
执行循环体,S=$\frac{1}{1×3}$,i=2
不满足条件i>3,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$,i=3
不满足条件i>3,执行循环体,S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$,i=4
满足条件i>3,退出循环,输出S=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$=$\frac{1}{2}$×(1-$\frac{1}{3}+\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$)=$\frac{3}{7}$.
故选:C.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+alnx-x(a≠0),g(x)=x2
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若对于任意的a∈(1,+∞),总存在x1,x2∈[1,a],使得f(x1)-f(x2)>g(x1)-g(x2)+m成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\left\{\begin{array}{l}{{e}^{x},x≥0}\\{-2x,x<0}\end{array}\right.$,若函数g(x)=f(f(x))+k在x∈R上有且仅有一个零点,则实数k的取值范围是(  )
A.(e,+∞)B.(1,e)C.(-∞,-e)D.(-e,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x=θ时,函数f(x)=3sinx-cosx取得最小值,则sinθ=$-\frac{{3\sqrt{10}}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数y=f(x)(x∈R)图象过点(e,0),f'(x)为函数f(x)的导函数,e为自然对数的底数,若x>0时,xf'(x)<2恒成立,则不等式f(x)+2≥2lnx解集为(0,e].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若数列{an}的前n项和记为Sn,并满足${a_n}=\left\{\begin{array}{l}2n-1,(n=2k-1,k∈{N^*})\\{2^n},(n=2k,k∈{N^*})\end{array}\right.$,则S7=(  )
A.30B.54C.100D.112

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知双曲线的渐近线方程为$y=±\sqrt{3}x$,一个焦点为$(0,-2\sqrt{2})$,则双曲线的标准方程是$\frac{{y}^{2}}{6}$-$\frac{{x}^{2}}{2}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.当三条直线l1:3x+my-1=0,l2:3x-2y-5=0,l3:6x+y-5=0不能围成三角形时,实数m的取值是±2或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\sqrt{10-3x}$+lg(2x-4)的定义域是(  )
A.(2,$\frac{10}{3}$]B.[2,$\frac{10}{3}$]C.(2,+∞)D.[$\frac{10}{3}$,+∞]

查看答案和解析>>

同步练习册答案