精英家教网 > 高中数学 > 题目详情

【题目】20名同学参加某次数学考试成绩(单位:分)的频率分布直方图如下:

)求频率分布直方图中的值;

)分别求出成绩落在中的学生人数;

)从成绩在的学生中任选2人,求此2人的成绩都在中的概率.

【答案】(1a=0005;(22人,3人;(3

【解析】试题分析:()由直方图中所有小矩形的面积之和为1(频率和为1)可求得;()总人数为20,而在上的频率为,在上的频率为,由此可得人数;()共有5人,可把他们编号,用列举法写出任取2人的所有可能,共10个,其中2人的成绩都在中的有3个,由概率公式可计算出概率.

试题解析:()据直方图知组距为10,由

,解得.

)成绩落在中的学生人数为

成绩落在中的学生人数为.

)记成绩落在中的2人为,成绩落在中的3人为

则从成绩在的学生中选2人的基本事件共有10个:

.

其中2人的成绩都在中的基本事件有3个: .

故所求概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组,第二组,第五组,下图是按上述分组方法得到的频率分布直方图.

(1)根据频率分布直方图,估计这50名学生百米测试成绩的平均值;

(2)若从第一组、第五组中随机取出两个成绩,求这两个成绩的差的绝对值大于1的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

I若函数处取得极值,求曲线在点处的切线方程;

II若函数上的最小值是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为正三角形,,,,平面.

)若为棱的中点求证平面;

)若,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两位射击运动员,在某天训练已各射击10次,每次命中的环数如下:

7 8 7 9 5 4 9 10 7 4

9 5 7 8 7 6 8 6 7 7

通过计算估计,甲、乙二人的射击成绩谁更稳

规定命中8环及以上环数为优秀,依据上述数据估计,在第11次时,甲、乙人分别获得优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销量价格P(元)的关系如图所示;③每月需各种开支2 000元.

(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;

(2)企业乙只依靠该店,最早可望在几年后脱贫?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某少数民族的刺绣有着悠久的历史,图中(1)、(2)、(3)、(4)为她们刺锈最简单的四个图案,这些图案都是由小正方向构成,小正方形数越多刺锈越漂亮,向按同样的规律刺锈(小正方形的摆放规律相同),设第个图形包含个小正方形

(1)求的值

(2)求出的表达式

(3)求证时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,圆.

(1)若抛物线的焦点在圆上,且和圆 的一个交点,求

(2)若直线与抛物线和圆分别相切于点,求的最小值及相应的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为自然对数的底数,

)判断函数的单调性,并说明理由;

)若,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案