【题目】设A是单位圆x2+y2=1上的任意一点,l是过点A与x轴垂直的直线,D是直线l与x轴的交点,点M在直线l上,且满足丨DM丨=m丨DA丨(m>0,且m≠1).当点A在圆上运动时,记点M的轨迹为曲线C.
(I)求曲线C的方程,判断曲线C为何种圆锥曲线,并求焦点坐标;
(Ⅱ)过原点且斜率为k的直线交曲线C于P、Q两点,其中P在第一象限,它在y轴上的射影为点N,直线QN交曲线C于另一点H,是否存在m,使得对任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,请说明理由.
【答案】解:(I)如图1,设M(x,y),A(x0 , y0)
∵丨DM丨=m丨DA丨,∴x=x0 , |y|=m|y0|
∴x0=x,|y0|= |y|①
∵点A在圆上运动,∴ ②
①代入②即得所求曲线C的方程为
∵m∈(0,1)∪(1,+∞),
∴0<m<1时,曲线C是焦点在x轴上的椭圆,两焦点坐标分别为( ),
m>1时,曲线C是焦点在y轴上的椭圆,两焦点坐标分别为( ),
(Ⅱ)如图2、3,x1∈(0,1),设P(x1 , y1),H(x2 , y2),则Q(﹣x1 , ﹣y1),N(0,y1),
∵P,H两点在椭圆C上,∴
①﹣②可得 ③
∵Q,N,H三点共线,∴kQN=kQH , ∴
∴kPQkPH=
∵PQ⊥PH,∴kPQkPH=﹣1
∴
∵m>0,∴
故存在 ,使得在其对应的椭圆 上,对任意k>0,都有PQ⊥PH
【解析】(I)设M(x,y),A(x0 , y0),根据丨DM丨=m丨DA丨,确定坐标之间的关系x0=x,|y0|= |y|,利用点A在圆上运动即得所求曲线C的方程;根据m∈(0,1)∪(1,+∞),分类讨论,可确定焦点坐标;(Ⅱ)x1∈(0,1),设P(x1 , y1),H(x2 , y2),则Q(﹣x1 , ﹣y1),N(0,y1),利用P,H两点在椭圆C上,可得 ,从而可得可得 .利用Q,N,H三点共线,及PQ⊥PH,即可求得结论.
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线与E交于A、B两点,且,其中O为原点.
(1)求抛物线E的方程;
(2)点C坐标为,记直线CA、CB的斜率分别为,证明: 为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在锐角△ABC中,a,b,c分别为内角A,B,C所对边的边长,且满足a-2bsin A=0.
(1)求角B的大小;
(2)若a+c=5,且a>c,b=,求·的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点,则直线AE与平面A1ED1所成角的大小为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(1)求二面角F-BE-D的余弦值;
(2)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣1|+|x﹣2|
(1)求不等式f(x)≤3的解集;
(2)若不等式||a+b|﹣|a﹣b||≤|a|f(x)(a≠0,a∈R,b∈R)恒成立,求实数x的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;③线性回归方程=x+必过(,);④曲线上的点与该点的坐标之间具有相关关系;⑤在一个2×2列联表中,由计算得K2=13.079,则其两个变量之间有关系的可能性是90%.其中错误的个数是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com