精英家教网 > 高中数学 > 题目详情
是定义在[-1,1]上的偶函数,的图象与的图象关于直线对称,且当x∈[ 2,3 ] 时,
(1)求的解析式;
(2)若上为增函数,求的取值范围;
(3)是否存在正整数,使的图象的最高点落在直线上?若存在,求出的值;若不存在,请说明理由.
(1)∴
(2)a>(6x2)max=6.
(3)证明见解析。
(1)当x∈[-1,0]时,2-x∈[2,3],f(x)=g(2-x)=-2ax+4x3;当x∈时,f(x)=f(-x)=2ax-4x3
………………………………………4分
(2)由题设知,>0对x∈恒成立,即2a-12x2>0对x∈恒成立,于是,a>6x2,从而a>(6x2)max=6.………………………8分
(3)因f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈的最大值.
=2a-12x2=0,得.…10分    若,即0<a≤6,则

故此时不存在符合题意的
>1,即a>6,则上为增函数,于是
令2a-4=12,故a=8.综上,存在a = 8满足题设.………………13分
评析:本题通过函数的知识来切入到导数,是在这两个重要知识的交汇处命题,意在考查学生的逻辑思维能力与推理能力,函数及导数的应用是数学的难点,也是考得最热的话题之一,也是本套试卷的把关题,对学生的要求较高.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知在函数的图象上以N(1,n)为切点的切线的倾斜角为
(Ⅰ)求m、n的值;
(Ⅱ)是否存在最小的正整数k,使得不等式恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;
(Ⅲ)(文科不做)求证: 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
   (1)当a=1时,试求函数的单调区间,并证明此时方程=0只有一个实数根,并求出此实数根;
(2)证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=-x2+8x,g(x)6lnxm.(Ⅰ)求f(x)在区间[tt+1]上的最大值h(t);(Ⅱ)是否存在实数m,使得yf(x)的图象与yg(x)的图象有且只有三个不同的交点?若存在,求出m的取值范围;,若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数为奇函数,其图象在点处的切线与直线垂直,且在x=-1处取得极值.
(Ⅰ)求a的值;
(Ⅱ)求函数上的最大值和最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若时,有极值.
(I) 求a、b、c的值;
(II) 求在[-3,1]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定义在上的奇函数处取得极值.
(Ⅰ)求函数的解析式;
  (Ⅱ)试证:对于区间上任意两个自变量的值,都有成立;
(Ⅲ)若过点可作曲线的三条切线,试求点P对应平面区域的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(I)若,求函数在区间的最大值与最小值;
(II)若函数在区间上都是增函数,求实数的取值范围.

查看答案和解析>>

同步练习册答案