精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)若函数处的切线方程为,求实数的值;

(2)若函数两处取得极值,求实数的取值范围;

(3)在(2)的条件下,若,求实数的取值范围.

【答案】(1);(2);(3).

【解析】

(1)由题意得:,解得.

(2)由题意知:有两个零点

,而.

时和时分类讨论,解得:.经检验,合题;

(3)由题意得,,即.

所以,令,即

,求导,得上单调递减,即.

.令,求导得上单调递减,得的取值范围.

(1)

由题意得:,即

,所以.

(2)由题意知:有两个零点

,而.

①当时,恒成立

所以单调递减,此时至多1个零点(舍).

②当时,令,解得:

上单调递减,在上单调递增,

所以

因为有两个零点,所以

解得:.

因为,且

上单调递减,

所以上有1个零点;

又因为(易证),

上单调递增,

所以上有1个零点.

综上:.

(3)由题意得,,即.

所以,令,即

,而

所以上单调递减,即

所以上单调递减,即.

因为.

,而恒成立,

所以上单调递减,又

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知在等比数列{an}中,=2,=128,数列{bn}满足b1=1,b2=2,且{}为等差数列.

(1)求数列{an}和{bn}的通项公式;

(2)求数列{bn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为F,点P为抛物线C上一点,O为坐标原点,.

1)求抛物线C的方程;

2)设Q为抛物线C的准线上一点,过点F且垂直于OQ的直线交抛物线CAB两点记的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数a≠0,数列的前n项和为,且

1)求证:数列为等差数列;

2)若且数列是单调递增数列,求实数a的取值范围;

3)若数列满足: 对于任意给定的正整数k,是否存在p,使若存在,求pq的值(只要写出一组即可);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的的参数方程为(其中为参数),以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线经过点曲线的极坐标方程为.

(1)求直线的普通方程与曲线的直角坐标方程

(2)过点作直线的垂线交曲线两点(轴上方),求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线的焦点,点轴上,为坐标原点,且满足,经过点且垂直于轴的直线与抛物线交于两点,且.

1)求抛物线的方程;

2)直线与抛物线交于两点,若,求点到直线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】第七届世界军人运动会(以下简称武汉军运会)专题新闻发布会在武汉举行,武汉军运会会徽、吉祥物正式公布.武汉军运会将于日举行,赛期.若将名志愿者分配到两个运动场馆进行服务,每个运动场馆至少名志愿者,则其中志愿者甲、乙或甲、丙被分到同一场馆的概率为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,若满足,则称函数型函数”.

1)判断函数是否为型函数,并说明理由;

2)设函数,记为函数的导函数.

①若函数的最小值为1,求的值;

②若函数型函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数fx,若关于x的方程f2x)﹣afx+aa20有四个不等的实数根,则a的取值范围是(

A.B.(﹣,﹣1)∪[1+∞

C.(﹣,﹣1)∪{1}D.(﹣10)∪{1}

查看答案和解析>>

同步练习册答案