精英家教网 > 高中数学 > 题目详情

【题目】02中选一个数字,从135中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为______.

【答案】

【解析】

先选后排,特殊元素和特殊位置优先安排的原则首先计算出所有无重复数字三位数的个数,再计算出三位数为奇数的个数,最后由古典概型概率计算公式即可得出结果.

2被选中时可组成个无重复的三位数,

0被选中时可组成个无重复的三位数;

对于三位数是奇数的情形:

02中选一个数字0,则0只能排在十位,

135中选两个数字排在个位与百位,共有种;

02中选一个数字2,则2排在十位,

135中选两个数字排在个位与百位,共有种;

2排在百位,从135中选两个数字排在个位与十位,共有种,

即无重复的三位奇数故共有种,

则三位数为奇数的概率为

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过点作倾斜角为的直线,以原点为极点,轴非负半轴为极轴建立极坐标系,曲线的极坐标方程为,将曲线上各点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,直线与曲线交于不同的两点.

1)求直线的参数方程和曲线的普通方程;

2)求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】党的十八大指出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善.现在从民主文明自由公正爱国敬业6个词语中任选2个,则至少有一个词语是从国家层面对社会主义核心价值观基本理念的凝练的概率是________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.四棱柱的底面是直角梯形,,四边形均为正方形.

1)证明;平面平面ABCD

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;

(2)设点的极坐标为,点在曲线上,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

1)若,求函数的单调区间;

2)若,且函数在区间内有两个极值点,求实数a的取值范围;

3)求证:对任意的正数a,都存在实数t,满足:对任意的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲居住在城镇的,准备开车到单位处上班,若该地各路段发生堵车事件都是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率如图(例如:算作两个路段:路段发生堵车事件的概率为,路段发生堵车事件的概率为).

(1)请你为甲选择一条由的最短路线

(即此人只选择从西向东和从南向北的路线),

使得途中发生堵车事件的概率最小;

(2)设甲在路线中遇到的堵车次数为随机变量,的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某汽车品牌为了了解客户对于其旗下的五种型号汽车的满意情况,随机抽取了一些客户进行回访,调查结果如下表:

汽车型号

I

II

III

IV

V

回访客户(人数)

250

100

200

700

350

满意率

0.5

0.3

0.6

0.3

0.2

满意率是指:某种型号汽车的回访客户中,满意人数与总人数的比值.

假设客户是否满意互相独立,且每种型号汽车客户对于此型号汽车满意的概率与表格中该型号汽车的满意率相等.

(1)从所有的回访客户中随机抽取1人,求这个客户满意的概率;

(2)从I型号和V型号汽车的所有客户中各随机抽取1人,设其中满意的人数为,求的分布列和期望;

(3)用 “”, “”, “”, “”, “”分别表示I, II, III, IV, V型号汽车让客户满意, “”, “”, “”, “”, “” 分别表示I, II, III, IV, V型号汽车让客户不满意.写出方差的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求的单调递增区间;

(2)证明:当时,有两个零点;

(3)若,函数处取得最小值,证明:.

查看答案和解析>>

同步练习册答案