精英家教网 > 高中数学 > 题目详情

【题目】针对国家提出的延迟退休方案,某机构进行了网上调查,所有参与调查的人中,持“支持”、“保留”和“不支持”态度的人数如下表所示:

支持

保留

不支持

岁以下

岁以上(含岁)

(1)在所有参与调查的人中,用分层抽样的方法抽取个人,已知从持“不支持”态度的人中抽取了人,求的值;

(2)在持“不支持”态度的人中,用分层抽样的方法抽取人看成一个总体,从这人中任意选取人,求至少有一人年龄在岁以下的概率.

(3)在接受调查的人中,有人给这项活动打出的分数如下: ,把这个人打出的分数看作一个总体,从中任取一个数,求该数与总体平均数之差的绝对值超过概率.

【答案】(1);(2);(3).

【解析】试题分析:(1)比上总人数等于30人比上持“不支持”态度的人数即可得解;

(2)列树状图,用古典概型计算即可;

(3)先计算平均数,再列举出与总体平均数之差的绝对值超过事件按,作比即可得解.

试题解析:

(1)参与调查的总人数为,其中从持“不支持”态度的人数中抽取了人,所以.

(2)易得,抽取的人中, 岁以下与岁以上人数分别为人(记为 ),人(记为 ),从这人中任意选取人,基本事件为:

其中,至少有人年龄在岁以下的事件有个,所求概率为.

(3)总体的平均数为

那么与总体平均数之差的绝对值超过的数有 ,所以任取个数与总体平均数之差的绝对值超过的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数部分图象如图所示.

1)求函数的解析式及的单调递增区间;

2)把函数图象上点的横坐标扩大到原来的2倍(纵坐标不变),再向左平移个单位,得到函数的图象,求关于x的方程上所有的实数根之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,求函数上的最大值;

(2)令,若在区间上为单调递增函数,求的取值范围;

(3)当 时,函数 的图象与轴交于两点 ,且 ,又的导函数.若正常数 满足条件.证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量a=(cosωx-sinωx,sinωx),b=(-cosωx-sinωx,2cosωx).设函数f(x)=a·b+λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈.

(1)求函数f(x)的最小正周期;

(2)若y=f(x)的图象经过点,求函数f(x)在区间上的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(题文)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.

(1)求数列{an}的通项公式;

(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X(小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y(百斤)与使用某种液体肥料x(千克)之间对应数据为如图所示的折线图.

(1) 依据数据的折线图,是否可用线性回归模型拟合yx的关系?请计算相关系数r并加以说明(精确到0.01)(若,则线性相关程度很高,可用线性回归模型拟合)

(2) 蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X限制,并有如表关系:

周光照量(单位:小时)

光照控制仪最多可运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以过去50周的周光照量的频率作为周光照量发生的概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数,参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】求出下列函数的定义域,并判断函数的奇偶性:

1;(2

3;(4.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产一种机器的固定成本为0.5万元,但每生产100台,需要加可变成本(即另增加投入)0.25万元,市场对此产品的年求量为500台,销售的收入函数为(万元)(),其中是产品售出的数量(单位:百台).

1)把利润表示为年产量的函数;

2)年产量是多少时,工厂所得利润最大?

查看答案和解析>>

同步练习册答案