精英家教网 > 高中数学 > 题目详情
已知集合M={m|m=in,n∈N},其中i2=-1,则下面属于M的元素是(  )
分析:根据i的性质,对n分4种情况讨论,分别计算n=4k、n=4k+1、n=4k+2、n=4k+3,求出集合M,再计算选项的值,判定是否属于集合M,可得答案.
解答:解:根据题意,M={ m|m=in,n∈N}中,
n=4k(k∈Z)时,in=1,n=4k+1时,in=i,n=4k+2时,in=-1,n=4k+3时,in=-i,
∴M={-1,1,i,-i}
选项A中(1-i)+(1+i)=2∉M,
选项B中(1-i)(1+i)=2∉M,
选项C中
1-i
1+i
=
(1-i)2
(1+i)(1-i)
=-i∈M

选项D中(1-i)2=-2i∉M
故选C.
点评:本题考查虚数单位i的计算、元素与集合关系的判断.注意要分4种情况进行讨论,进而计算,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知集合M={ m|m=in,n∈N},则下面属于M的元素是(  )
A、(1-i)+(1+i
B、(1-i)(1+i
C、
1-i
1+i
D、(1-i)2

查看答案和解析>>

科目:高中数学 来源: 题型:

设V是已知平面M上所有向量的集合,对于映射f:V→V,a∈V,记a的象为f(a).若映射f:V→V满足:对所有a、b∈V及任意实数λ,μ都有f(λa+μb)=λf(a)+μf(b),则f称为平面M上的线性变换.下列命题中假命题是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合M={1,2,3,…,n}(n∈N*),若集合A={a1a2a3,…,am}(m∈N*),且对任意的b∈M,存在ai,aj∈A(1≤i≤j≤m),使得b=λ1ai2aj(其中λ1,λ2∈{-1,0,1}),则称集合A为集合M的一个m元基底.
(Ⅰ)分别判断下列集合A是否为集合M的一个二元基底,并说明理由;
①A={1,5}M={1,2,3,4,5};
②A={2,3},M={1,2,3,4,5,6}.
(Ⅱ)若集合A是集合M的一个m元基底,证明:m(m+1)≥n;
(Ⅲ)若集合A为集合M={1,2,3,…,19}的一个m元基底,求出m的最小可能值,并写出当m取最小值时M的一个基底A.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x2-4x+3|.
(1)求函数f(x)的单调区间,并指出其增减性;
(2)求集合M={m|m使方程f(x)=m有四个不相等的实根}.

查看答案和解析>>

同步练习册答案