【题目】解关于的不等式: .
【答案】见解析
【解析】试题分析:讨论a=0、a>0和a<0时,分别求出对应不等式的解集即可.
详解:不等式ax2+(2﹣a)x﹣2>0化为(ax+2)(x﹣1)>0,
当a=0时,不等式化为x﹣1>0,
解得x>1;
当a>0时,不等式化为(x+)(x﹣1)>0,
且﹣<1,解不等式得x<﹣或x>1;
当a<0时,不等式化为(x+)(x﹣1)<0,
若a<﹣2,则﹣<1,解不等式得﹣<x<1;
若a=﹣2,则﹣=1,不等式化为(x﹣1)2<0,解得x∈;
若﹣2<a<0,则﹣>1,解不等式得1<x<﹣;
综上,a=0时不等式的解集为{x|x>1};
a>0时不等式的解集为{x|x<﹣或x>1};
a<﹣2时,不等式的解集为{x|﹣<x<1};
a=﹣2时,不等式的解集为;
﹣2<a<0时,不等式的解集为{x|1<x<﹣}.
科目:高中数学 来源: 题型:
【题目】乔经理到老陈的果园里一次性采购一种水果,他俩商定:乔经理的采购价(元/吨)与采购量(吨)之间函数关系的图像如图中的折线段所示(不包含端点但包含端点).
(1)求与之间的函数关系式;
(2)已知老陈种植水果的成本是2800元/吨,那么乔经理的采购量为多少时,老陈在这次买卖中所获的利润最大?最大利润是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题错误的是( )
A.命题“若 ,则 ”的逆命题为“若 ,则 ”
B.对于命题 ,使得 ,则 ,则
C.“ ”是“ ”的充分不必要条件
D.若 为假命题,则 均为假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某市电视台为了提高收视率而举办有奖问答活动,随机对该市15~65岁的人群抽样了 人,回答问题统计结果及频率分布直方图如图表所示.
(1)分别求出 的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,电视台决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C: ,点 在x轴的正半轴上,过点M的直线 与抛物线C相交于A,B两点,O为坐标原点.
(1)若 ,且直线 的斜率为1,求以AB为直径的圆的方程;
(2)是否存在定点M,使得不论直线 绕点M如何转动, 恒为定值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系 中,已知圆 ,点 ,点 ,以B为圆心, 为半径作圆,交圆C于点P,且 的平分线交线段CP于点Q.
(1)当a变化时,点Q始终在某圆锥曲线 上运动,求曲线 的方程;
(2)已知直线l过点C,且与曲线 交于M,N两点,记 面积为 , 面积为 ,求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形中, , , , , 、分别在、上, ,现将四边形沿折起,使平面平面.
()若,是否存在折叠后的线段上存在一点,且,使得平面?若存在,求出的值;若不存在,说明理由.
()求三棱锥的体积的最大值,并求此时点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com