【题目】如图,已知菱形ABEF所在的平面与△ABC所在的平面相互垂直,AB=4,BC= ,BC⊥BE,∠ABE= .
(1)求证:BC⊥平面ABEF;
(2)求平面ACF与平面BCE所成的锐二面角的余弦值.
【答案】
(1)
解:如图,在菱形ABEF中,取AB中点O,∵,∠ABE= .∴EO⊥AB,
又∵平面ABEF⊥面ABC,平面ABEF∩面ABC=AB,EO面ABEF
∴.EO⊥面ABC,则EO⊥BC,又∵BC⊥BE,且BE∩EO=E
∴BC⊥平面ABEF
(2)
解:由(1)得EO⊥面ABC,BC⊥平面ABEF.
∴以O为原点,OB,OE所在直线为y、z轴建立如图直角坐标系O﹣xyz.
则A(0,﹣2,0),B(0,2,0),C( ,2,0),F(0,﹣4,2 ),E(0,0,2 ).
设平面ACF的法向量为 ,
,
由 取 .
设平面BCE的法向量为 ,
, ,
由 ,取 .
,
∴平面ACF与平面BCE所成的锐二面角的余弦值为 .
【解析】(1)如图,在菱形ABEF中,取AB中点O,可得EO⊥面ABC,EO⊥BC,BC⊥平面ABEF.(2)由(1)得EO⊥面ABC,BC⊥平面ABEF.以O为原点,OB,OE所在直线为y、z轴建立如图直角坐标系O﹣xyz.则A(0,﹣2,0),B(0,2,0),C( ,2,0),F(0,﹣4,2 ),E(0,0,2 ).
求出平面ACF的法向量为 ,平面BCE的法向量为 ,利用向量法夹角公式即可求解.
【考点精析】认真审题,首先需要了解直线与平面垂直的判定(一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想).
科目:高中数学 来源: 题型:
【题目】已知{an}是等比数列,an>0,a3=12,且a2 , a4 , a2+36成等差数列.
(1)求数列{an}的通项公式;
(2)设{bn}是等差数列,且b3=a3 , b9=a5 , 求b3+b5+b7+…+b2n+1 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和为Sn . 已知a1=2,Sn+1=4an+2.
(1)设bn=an+1﹣2an , 证明数列{bn}是等比数列;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,M(x1 , y1),N(x2 , y2)是椭圆 + =1上的点,且x1x2+2y1y2=0,设动点P满足 = +2
(Ⅰ)求动点P的轨迹C的方程;
(Ⅱ)若直线l:y=x+m(m≠0)与曲线C交于A,B两点,求三角形OAB面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(3x+3φ)﹣2sin(x+φ)cos(2x+2φ),其中|φ|<π,若f(x)在区间 上单调递减,则φ的最大值为 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,底面ABCD是菱形, ,PA=PD,F为AD的中点,PD⊥BF.
(1)求证:AD⊥PB;
(2)若菱形ABCD的边长为6,PA=5,求四面体PBCD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直三棱柱ABC﹣A1B1C1的底面是边长为4的正三角形,B,E,F分别是AA1 , CC1的中点,且BE⊥B1F.
(Ⅰ)求证:B1F⊥EC1;
(Ⅱ)求二面角C1﹣BE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=lnx+a(1-x),问:(1)讨论f(x) 的单调性;(2)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
(1)(I)讨论f(x) 的单调性;
(2)(II)当 f(x)有最大值,且最大值大于2a-2 时,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com