精英家教网 > 高中数学 > 题目详情
如图,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF-90°,BECF,CE⊥EF,AD=
3
,EF=2.
(1)求异面直线AD与EF所成的角;
(2)当AB的长为何值时,二面角A-EF-C的大小为45°?
如图,以点C为坐标原点,以CB,CF和CD分别为作x轴,y轴和z轴,建立空间直角坐标系
设AB=a,BE=b,CF=c,(b<c)
C(0,0,0),A(
3
,0,a),B(
3
,0,0),E(
3
,b,0)

F(0,c,0),D(0,0,a)(2分)
(I)
DA
=(
3
,0,0),
CB
=(
3
,0,0),
FE
=(
3
,b-c,0)

|
FE
|=2
,得3+(b-c)2=4,∴b-c=-1.
所以
FE
=(
3
,-1,0)

所以cos<
DA
FE
>=
DA
FE
|
DA
|•|
FE
|
=
3
3
×2
=
3
2

所以异面直线AD与EF成30°
(II)设
n
=(1,y,z)
为平面AEF的法向量,则
n
AE
=0,
n
EF
=0

结合|
BC
|2+|
BE
|2=|
CF
|2-|
EF
|2

解得
n
=(1,
3
3
3
a
)
.(8分)
又因为BA⊥平面BEFC,
BA
=(0,0,a)

所以cos<
n
BA
n
BA
|
n
|•|
BA
|
=
3
3
a
a
4a2+27
=
2
2

得到a=
3
3
2

所以当AB为
3
3
2
时,二面角A-EF-C的大小为45°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=45°.若对于β内异于O的任意一点Q,都有∠POQ≥45°,则二面角α-AB-β的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在三棱锥S-ABC中,AB⊥BC,AB=BC=
2
,SA=SC=2,二面角S-AC-B的余弦值是
3
3
,若S、A、B、C都在同一球面上,则该球的表面积是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,二面角α-l-β的棱l上有两点B、C,AB⊥l,CD⊥l,且AB⊆α,CD⊆β,若AB=CD=BC=2,AD=4,则此二面角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,正三棱柱ABC-A1B1C1中,AB=2,AA1=1,点P在平面BCC1B1内,PB1=PC1=
2

(1)求证:PA1⊥BC;
(2)求二面角C1-PA1-A.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,AB=AD=DE=
1
2
CD,M是线段AE上的动点.
(Ⅰ)试确定点M的位置,使AC平面DMF,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面DMF与平面ABCD所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在几何体ABCDE中,AB=AD=BC=DC=2,AE=2
2
,AB⊥AD,且AE⊥平面ABD,平面CBD⊥平面ABD.
(Ⅰ)求证:AB平面CDE;
(Ⅱ)求二面角A-EC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,异面直线A1B与AC所成的角是______°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m、n表示不同直线,α、β表示不同平面,则下列结论中正确的是(  )
A.若m∥α,m∥n,则n∥α
B.若m?α,n?β,m∥β,n∥α,则α∥β
C.若α∥β,m∥α,m∥n,则n∥β
D.若α∥β,m∥α,n∥m,n?β,则n∥β

查看答案和解析>>

同步练习册答案