精英家教网 > 高中数学 > 题目详情
7.下面是关于函数y=ax2+bx+c,a≠0,x∈M,M为非空集合,关于最值的论述:
(1)当a>0时,函数一定有最小值为$\frac{{4ac-{b^2}}}{4a}$;
(2)y是否有最大值和最小值,关键取决于x的范围,有可能y既有最大值,也有最小值,其值不一定是$\frac{{4ac-{b^2}}}{4a}$;
(3)求y的最大值或最小值时,利用公式:$x=-\frac{b}{2a}$求出对称轴,再画草图,根据x的范围截取图象,最后根据图象确定取最大值或最小值时对应的x值,然后通过代入求得最值.
以上结论中正确的个数有(  )
A.0B.1C.2D.3

分析 根据二次函数的性质判断即可.

解答 解:(1)当a>0时,x∈M,M为非空集合,若M是开区间,则函数没有最小值,(1)错误;
(2)y是否有最大值和最小值,关键取决于x的范围,有可能y既有最大值,也有最小值,其值不一定是$\frac{{4ac-{b^2}}}{4a}$,故(2)正确;
(3)求y的最大值或最小值时,利用公式:$x=-\frac{b}{2a}$求出对称轴,再画草图,根据x的范围截取图象,最后根据图象确定取最大值或最小值时对应的x值,然后通过代入求得最值,故(3)正确;
以上结论中正确的个数有2个,
故选:C.

点评 本题考察了二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知sin(x+$\frac{π}{3}$)=$\frac{1}{3}$,则cosx+cos($\frac{π}{3}$-x)的值为(  )
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.-$\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线l与直线l′:x+$\sqrt{3}$y=0垂直,垂足为O,过C的右焦点F分别作l,l′的垂线,垂足分别为N,P,若四边形ONFP的面积为$\sqrt{3}$,则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{{{x^4}+k{x^2}+1}}{{{x^4}+{x^2}+1}}\;(k∈R)$,若对任意三个实数a、b、c,均存在一个以f(a)、f(b)、f(c)为三边之长的三角形,则k的取值范围是(  )
A.-2<k<4B.$-\frac{1}{2}<k<4$C.-2<k≤1D.$-\frac{1}{2}<k≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知等差数列{an}前四项中第二项为606,前四项和S4为3883,则该数列第4项为(  )
A.3074B.2065C.2024D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义在(-∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(-∞,0)上是增函数;又定义行列式|$\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}$|=a1a4-a2a3; 函数g(θ)=|$\begin{array}{l}{sinθ}&{3-cosθ}\\{m}&{sinθ}\end{array}$|(其中0≤θ≤$\frac{π}{2}$).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤$\frac{π}{2}$,g(θ)>0},N={m|任意的0≤θ≤$\frac{π}{2}$,f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知直线y=kx+1与双曲线3x2-y2=3的右支相交于不同的两点,则k的取值范围是$(-2,-\sqrt{3})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图的程序图的算法思路中是一种古老而有效的算法--辗转相除法,执行改程序框图,若输入的m,n的值分别为30,42,则输出的m=(  )
A.0B.2C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知定义在实数集R上的偶函数f(x)和奇函数g(x)满足f(x)+g(x)=2x+1
(1)求f(x)与g(x)的解析式;
(2)若定义在实数集R上的以2为最小正周期的周期函数φ(x),当-1≤x≤1时,φ(x)=f(x),试求φ(x)在闭区间[2015,2016]上的表达式,并证明φ(x)在闭区间[2015,2016]上单调递减;
(3)设h(x)=x2+2mx+m2-m+1(其中m为常数),若h(g(x))≥m2-m-1对于x∈[1,2]恒成立,求m的取值范围.

查看答案和解析>>

同步练习册答案