精英家教网 > 高中数学 > 题目详情
13.已知函数f(x)=$\left\{\begin{array}{l}\frac{1}{x}+1,0<x≤2\\ lnx,\;\;x>2\end{array}$,如果关于x的方程f(x)=k有两个不同的实根,那么实数k的取值范围是(  )
A.(1,+∞)B.$[\frac{3}{2},+∞)$C.$[{e^{\frac{3}{2}}},+∞)$D.[ln2,+∞)

分析 作函数f(x)=$\left\{\begin{array}{l}\frac{1}{x}+1,0<x≤2\\ lnx,\;\;x>2\end{array}$与y=k的图象,从而利用数形结合求解.

解答 解:作函数f(x)=$\left\{\begin{array}{l}\frac{1}{x}+1,0<x≤2\\ lnx,\;\;x>2\end{array}$与y=k的图象如下,

∵ln2$<\frac{3}{2}$,
∴结合图象可知,k≥$\frac{3}{2}$;
故选:B.

点评 本题考查了分段函数的应用及数形结合的思想应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等比数列{an}的各项均为正数,a1=1,公比为q;等差数列{bn}中,b1=3,且{bn}的前n项和为Sn,a3+S3=27,q=$\frac{S_2}{a_2}$.
(Ⅰ)求{an}与{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=$\frac{3}{{2{S_n}}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.集合 A={x|y=$\sqrt{4-x}$},B={x|x≥3},则 A∩B=(  )
A.{x|3≤x≤4}B.{x|x≤3或x≥4}C.{x|x≤3或x>4}D.{x|3≤x<4}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=x${\;}^{-{k}^{2}+k+2}$,且f(2)>f(3),则实数k的取值范围是(-∞,-1)∪(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≥0}\\{1,x<0}\end{array}\right.$.
(1)写出该函数的单调递增区间;
(2)解不等式f(1-x2)>f(2x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如果函数f(x)=x2sinx+a的图象过点(π,1)且f(t)=2.那么a=1;f(-t)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.“sin2α-$\sqrt{3}$cos2α=1”是“α=$\frac{π}{4}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点P是抛物线y2=2x上的动点,定点Q(m,0),那么“m≤1“是“|PQ|的最小值为|m|”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若函数f(x)=$\left\{\begin{array}{l}{(x+a)^{2},x≤0}\\{x+\frac{1}{x}+a,x>0}\end{array}\right.$,若f(0)是f(x)的最小值,则实数a的取值范围[-1,0].

查看答案和解析>>

同步练习册答案