精英家教网 > 高中数学 > 题目详情
12.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为正方形,点M,N分别为线段PB,PC上的点,MN⊥PB.
(Ⅰ)求证:BC⊥平面PAB;
(Ⅱ)当PA=AB=2,二面角C-AN-D大小为为$\frac{π}{3}$时,求PN的长.

分析 (Ⅰ)推导出AB⊥BC,PA⊥BC,由此能证明BC⊥平面PAB.
(Ⅱ)以A为原点,AB,AD,AP所在直线为x,y,z轴,建立空间直角坐标系A-xyz,利用向量法能求出PN的长.

解答 证明:(Ⅰ)在正方形ABCD中,AB⊥BC,…(1分)
因为PA⊥平面ABCD,BC?平面ABCD,所以PA⊥BC.…(2分)
因为AB∩PA=A,且AB,PA?平面PAB,
所以BC⊥平面PAB…(4分)
解:(Ⅱ)因为PA⊥平面ABCD,AB,AD?平面ABCD,
所以PA⊥AB,PA⊥AD.
又AB⊥AD,如图,以A为原点,AB,AD,AP所在直线为x,y,z轴,
建立空间直角坐标系A-xyz,…(6分)
所以C(2,2,0),D(0,2,0),B(2,0,0),P(0,0,2).
设平面DAN的一个法向量为$\overrightarrow n=(x,y,z)$,
平面CAN的一个法向量为$\overrightarrow m=(a,b,c)$,
设$\overrightarrow{PN}=λ\overrightarrow{PC}$,λ∈[0,1],
因为$\overrightarrow{PC}=(2,2,-2)$,所以$\overrightarrow{AN}=(2λ,2λ,2-2λ)$,
又$\overrightarrow{AD}=(0,2,0)$,所以$\left\{\begin{array}{l}\overrightarrow{AN}•\overrightarrow n=0\\ \overrightarrow{AD}•\overrightarrow n=0\end{array}\right.$,即$\left\{\begin{array}{l}2λx+2λy+(2-2λ)z=0\\ 2y=0\end{array}\right.$,
取z=1,得到$\overrightarrow n=(\frac{λ-1}{λ},0,1)$,…(8分)
因为$\overrightarrow{AP}=(0,0,2)$,$\overrightarrow{AC}=(2,2,0)$
所以$\left\{\begin{array}{l}\overrightarrow{AP}•\overrightarrow m=0\\ \overrightarrow{AC}•\overrightarrow m=0\end{array}\right.$,即$\left\{\begin{array}{l}2c=0\\ 2a+2b=0\end{array}\right.$,
取a=1得,到$\overrightarrow m=(1,-1,0)$,…10分
因为二面C-AN-D大小为$\frac{π}{3}$,所以$|cos<\overrightarrow m,\overrightarrow n>|=cos\frac{π}{3}=\frac{1}{2}$,
所以$|cos<\overrightarrow m,\overrightarrow n>|=|{\frac{\overrightarrow m•\overrightarrow n}{{|\overrightarrow m||\overrightarrow{n|}}}}|=|{\frac{{\frac{λ-1}{λ}}}{{\sqrt{2}\sqrt{{{(\frac{λ-1}{λ})}^2}+1}}}}|=\frac{1}{2}$,
解得$λ=\frac{1}{2}$,所以$PN=\sqrt{3}$…(12分)

点评 本题考查线面垂直的证明,考查线段长的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)的导函数为f′(x),且2 f'(x)<f (x)(x∈R),f(2)=e (e为自然对数的底数),则不等式f (lnx)>x${\;}^{\frac{1}{2}}$的解集为(0,e2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在极坐标系中,圆C的方程为ρ=2asinθ (a>0).以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,设直线l的参数方程为$\left\{{\begin{array}{l}{x=3t+1}\\{y=4t+3}\end{array}}\right.$(t为参数).
(Ⅰ)求圆C的标准方程和直线l的普通方程;
(Ⅱ)若直线l与圆C交于A,B两点,且$|{AB}|≥\sqrt{3}a$.求实数a的取值范围?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=$\sqrt{5}$,BC=4,A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{x^2},x≥0\\-{x^2},x<0\end{array}$,若f(a2)<f(2-a),则实数a的取值范围是(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=$\left\{\begin{array}{l}{{2}^{x},x≥0}\\{lo{g}_{2}(-x),x<0}\end{array}\right.$ 则f(f(-2))=2;若f(x)≥2,则实数x的取值范围是x≥1或x≤-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x+2017,x>0}\\{-f(x+2),x≤0}\end{array}\right.$,则f(-2016)=-2018.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)定义在(0,$\frac{π}{2}$)上,f′(x)是它的导函数,且tanx•f(x)>f′(x)在定义域内恒成立,则(  )
A.$\sqrt{2}$f($\frac{π}{4}$)<f($\frac{π}{3}$)B.$\sqrt{3}$f($\frac{π}{6}$)<f($\frac{π}{3}$)C.cos1•f(1)>$\frac{\sqrt{3}}{2}$f($\frac{π}{6}$)D.$\sqrt{2}$f($\frac{π}{4}$)<$\sqrt{3}$f($\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=(sinx+cosx)2+cos2x的单调增区间为$[kπ-\frac{3π}{8},kπ+\frac{π}{8}](k∈Z)$.

查看答案和解析>>

同步练习册答案