精英家教网 > 高中数学 > 题目详情

【题目】如图,四面体ABCD中,平面DAC⊥底面ABCADCDOAC的中点,EBD的中点.

(1)证明:DO⊥底面ABC

(2)求二面角D-AE-C的余弦值.

【答案】(1)见解析;

(2).

【解析】

1)根据等腰三角形的性质得到,在根据面面垂直的性质定理,证得平面.

2)以为坐标原点建立空间直角坐标系,利用平面和平面的法向量,计算出二面角的余弦值.

(1)证明:∵ ADCDOAC的中点,

DOAC

∵ 平面DAC⊥底面ABC,平面DAC∩底面ABCAC

DO⊥底面ABC

(2)解:由条件易知DOBOBOAC

OAOCOD=2, OB

如图,以点O为坐标原点,OAx轴, OBy轴,OCz轴建立空间直角坐标系.

设平面ADE的一个法向量为

,则所以

同理可得平面AEC的一个法向量

因为二面角D-AE-C的平面角为锐角,所以二面角D-AE-C的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正方体的棱长为分别是的中点,则过且与平行的平面截正方体所得截面的面积为______和该截面所成角的正弦值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线与抛物线交于两点,且.

(1)求的方程;

(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线与抛物线交于两点,且.

(1)求的方程;

(2)试问:在轴的正半轴上是否存在一点,使得的外心在上?若存在,求的坐标;若不存在,请说明理由..

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设动点P在棱长为1的正方体ABCDA1B1C1D1的对角线BD1上,记λ.∠APC为钝角时,λ的取值范围是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(本题满分15分)已知m1,直线

椭圆分别为椭圆的左、右焦点.

)当直线过右焦点时,求直线的方程;

)设直线与椭圆交于两点,

的重心分别为.若原点在以线段

为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中),,已知处有相同的切线.

1)求函数的解析式;

2)求函数在区间上的最大值和最小值;

3)判断函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,动圆与圆外切,与圆内切.

1)求动圆圆心的轨迹方程;

2)直线过点且与动圆圆心的轨迹交于两点.是否存在面积的最大值,若存在,求出的面积;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市准备引进优秀企业进行城市建设. 城市的甲地、乙地分别对5个企业(共10个企业)进行综合评估,得分情况如茎叶图所示.

(Ⅰ)根据茎叶图,求乙地对企业评估得分的平均值和方差;

(Ⅱ)规定得分在85分以上为优秀企业. 若从甲、乙两地准备引进的优秀企业中各随机选取1个,求这两个企业得分的差的绝对值不超过5分的概率.

注:方差

查看答案和解析>>

同步练习册答案