精英家教网 > 高中数学 > 题目详情
12.已知P=log45,Q=log54,R=log4(log54),则(  )
A.R<Q<PB.P<R<QC.Q<R<PD.R<P<Q

分析 判断三个数值与0,1大小,即可推出结果.

解答 解:P=log45>1,
Q=log54∈(0,1),
R=log4(log54)<0,
可得R<Q<P.
故选:A.

点评 本题考查对数值的大小比较,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{2}{si{n}^{2}x}$$+\frac{8}{1+co{s}^{2}x}$的最小值是9.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知集合A={x|x2-x<0},B={x|x2+2mx+2m+1<0},A∪B=A,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解不等式组$\left\{\begin{array}{l}{x-3(x-2)>1}\\{\frac{2x-1}{5}≥\frac{x+1}{2.}}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知1g(x+2y)+1g(x-y)=1g2+1gx+lgy,求$\frac{x}{y}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.写出下列函数的定义域:
(1)y=log5(x-1);
(2)y=$\sqrt{lo{g}_{3}x}$;
(3)y=$\frac{1}{lo{g}_{2}x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{OA}$=(3,2),$\overrightarrow{OB}$=(-4,y)并且$\overrightarrow{OB}$⊥$\overrightarrow{OA}$,则|$\overrightarrow{OB}$|=2$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.给出平面可行域(如图),若使目标函数z=ax+y取最大值的最优解有无穷多个,则a=(  )
A.$\frac{1}{4}$B.$\frac{3}{5}$C.4D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.探究:在[m,n]上,f(x)=ax(a>0且a≠1)值域?

查看答案和解析>>

同步练习册答案