精英家教网 > 高中数学 > 题目详情

【题目】某几何体的三视图如图所示,则此几何体的体积是________,表面积是________.

【答案】

【解析】根据三视图可知几何体是一个四棱锥,

底面是一个边长为2的正方形,PE⊥面ABCD,且PE=2,

其中E、F分别是BC、AD的中点,连结EF、PA,

∴几何体的体积V=

在△PEB中,PB=,同理可得PC=

PE⊥面ABCD,PECD,

CDBC,BCPE=E,CD⊥面PBC,则CDPC,

在△PCD中,PD=

同理可得PA=3,则PFAD,

在△PDF中,PF=

∴此几何体的表面积S=2×2++

=

∴几何体的体积是;表面积是

故填(1)(2) .

点睛:本题的难点在于计算几何体的表面积,计算表面积时,一是要一个一个地算,以免遗漏或重复,二是计算表面积先要看平面图形的特征,再计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高二年级组织成语听说大赛,每班选10名同学参赛,要求每位同学回答5个成语,各位同学的得分总和算作本班成绩,其中一班的张明同学参赛,他每道题答对的概率均为,且每道题答对与否互不影响.计分办法规定为答对不超过3个题时,每答对一个得一分,超过三个,每多答对一个得两分.

(1)求张明至少答对三道题的概率;

(2)设张明答完5道题得分为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数给出下列四个命题:

①c = 0时,是奇函数;时,方程只有一个实根;

的图象关于点(0 , c)对称; ④方程至多3个实根.

其中正确的命题个数是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线,点 ,过点的直线交于 两点.

1)当轴垂直时,求直线的方程;

2)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数上的奇函数.

(1)求的值;

(2)证明上单调递减;

(3)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高中三年级的甲、乙两个同学同时参加某大学的自主招生,在申请的材料中提交了某学科10次的考试成绩,记录如下:

甲:78 86 95 97 88 82 76 89 92 95

乙:73 83 69 82 93 86 79 75 84 99

(1)根据两组数据,作出两人成绩的茎叶图,并通过茎叶图比较两人本学科成绩平均值的大小关系及方差的大小关系(不要求计算具体值,直接写出结论即可)

(2)现将两人的名次分为三个等级:

成绩分数

等级

合格

良好

优秀

根据所给数据,从甲、乙获得“优秀”的成绩组合中随机选取一组,求选中甲同学成绩高于乙同学成绩的组合的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知正三棱锥P-ABC的侧面是直角三角形,PA=6,顶点P在平面ABC内的正投影为点DD在平面PAB内的正投影为点E,连结PE并延长交AB于点G.

)证明:GAB的中点;

)在图中作出点E在平面PAC内的正投影F(说明作法及理由),并求四面体PDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1的方程为,双曲线C2的左、右焦点分别是C1的左、右顶点,而C2的左、右顶点分别是C1的左、右焦点,O为坐标原点.

(1)求双曲线C2的方程;

(2)若直线lykx与双曲线C2恒有两个不同的交点AB,且,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(01)且斜率为k的直线l与圆C(x2)2(y3)21交于MN两点.

(1)k的取值范围;

(2)12,其中O为坐标原点,求|MN|.

查看答案和解析>>

同步练习册答案