精英家教网 > 高中数学 > 题目详情

【题目】下列各组函数是同一函数的是(
A.y= 与y=2
B.y= 与y=x(x≠﹣1)
C.y=|x﹣2|与y=x﹣2(x≥2)
D.y=|x+1|+|x|与y=2x+1

【答案】B
【解析】解:A.y= = ,两个函数的定义域和对应法则都不一样,所以A不是同一函数.
B.y= =x(x≠﹣1)与y=x(x≠﹣1),两个函数的定义域和对应法则都一样,所以B是同一函数.
C.y=|x﹣2|与y=x﹣2(x≥2),两个函数的定义域和对应法则都不一样,所以C不是同一函数.
D.y=|x+1|+|x|与y=2x+1的对应法则不一致,所以D不是同一函数.
故选:B.
【考点精析】本题主要考查了判断两个函数是否为同一函数的相关知识点,需要掌握只有定义域和对应法则二者完全相同的函数才是同一函数才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,记的导函数.

(1)若曲线在点处的切线垂直于直线,求的值;

(2)讨论的解的个数;

(3)证明:对任意的,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)解不等式f(x)<
(2)求函数f(x)值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2+bx+1(x∈R),(a,b为实数).
(1)若f(1)=0,且函数f(x)的值域为[0,+∞),求f(x)的表达式;
(2)在(1)的条件下,若关于x方程|f(x+1)﹣1|=m|x﹣1|只有一个实数解,求实数m的取值范围;
(3)在(1)的条件下,求函数h(x)=2f(x+1)+x|x﹣m|+2m最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)(…是自然对数的底数).

(1)求单调区间;

(2)讨论在区间内零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在四棱锥中,底面是菱形, 平面 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若,求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】共享单车是指企业在校园、地铁站点、公交站点、居民区、商业区、公共服务区等提供自行车单车共享服务,是共享经济的一种新形态.一个共享单车企业在某个城市就“一天中一辆单车的平均成本(单位:元)与租用单车的数量(单位:千辆)之间的关系”进行调查研究,在调查过程中进行了统计,得出相关数据见下表:

租用单车数量(千辆)

2

3

4

5

8

每天一辆车平均成本(元)

3.2

2.4

2

1.9

1.7

根据以上数据,研究人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲: ,方程乙: .

(1)为了评价两种模型的拟合效果,完成以下任务:

①完成下表(计算结果精确到0.1)(备注: ,称为相应于点的残差(也叫随机误差));

租用单车数量 (千辆)

2

3

4

5

8

每天一辆车平均成本 (元)

3.2

2.4

2

1.9

1.7

模型甲

估计值

2.4

2.1

1.6

残差

0

-0.1

0.1

模型乙

估计值

2.3

2

1.9

残差

0.1

0

0

②分别计算模型甲与模型乙的残差平方和,并通过比较的大小,判断哪个模型拟合效果更好.

(2)这个公司在该城市投放共享单车后,受到广大市民的热烈欢迎,共享单车常常供不应求,于是该公司研究是否增加投放.根据市场调查,这个城市投放8千辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.6,0.4;投放1万辆时,该公司平均一辆单车一天能收入10元,6元收入的概率分别为0.4,0.6.问该公司应该投放8千辆还是1万辆能获得更多利润?(按(1)中拟合效果较好的模型计算一天中一辆单车的平均成本,利润=收入-成本).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=x2﹣2ax+a在区间(﹣∞,1)上有最小值,则函数 在区间(1,+∞)上一定(
A.有最小值
B.有最大值
C.是减函数
D.是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线E的中心在坐标原点,离心率为2,E的右焦点与抛物线C:y2=8x的焦点重合,A、B是C的准线与E的两个交点,则|AB|=(
A.3
B.6
C.9
D.12

查看答案和解析>>

同步练习册答案