精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
(
1
2
)x   
x≥4 
 f(x+1)   x<4   
,则f(2+log23)的值为
 
分析:因为所给函数为分段函数,要求函数值,只要判断2+log23在哪个范围即可,代入解析式后,用指对数的运算律进行化简.
解答:解:∵2+log23∈(2,3),
∴f(2+log23)=f(2+log23+1)=f(3+log23)=(
1
2
)
3+log23
=(
1
2
)
3
(
1
2
)
log23
=
1
8
×
1
3
=
1
24

故答案为
1
24
点评:本题考查了分段函数求函数值,做题时要看清题意,避免代入错误.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3x+5,(x≤0)
x+5,(0<x≤1)
-2x+8,(x>1)

求(1)f(
1
π
),f[f(-1)]
的值;
(2)若f(a)>2,则a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=
(1-3a)x+10ax≤7
ax-7x>7.
是定义域上的递减函数,则实数a的取值范围是(  )
A、(
1
3
,1)
B、(
1
3
1
2
]
C、(
1
3
6
11
]
D、[
6
11
,1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
|x-1|-a
1-x2
是奇函数.则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x-2-x2x+2-x

(1)求f(x)的定义域与值域;
(2)判断f(x)的奇偶性并证明;
(3)研究f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x-1x+a
+ln(x+1)
,其中实数a≠1.
(1)若a=2,求曲线y=f(x)在点(0,f(0))处的切线方程;
(2)若f(x)在x=1处取得极值,试讨论f(x)的单调性.

查看答案和解析>>

同步练习册答案